An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds

被引:4
作者
Andrade, Joao S. [1 ,2 ]
Lopes, Jurandir de O. [2 ]
Souza, Joao Carlos de O. [2 ,3 ]
机构
[1] Univ Fed Piaui, CSHNB, BR-64607670 Picos, PI, Brazil
[2] Univ Fed Piaui, Dept Math, CCN, BR-64049550 Teresina, PI, Brazil
[3] Aix Marseille Univ, AMSE, CNRS, Marseille, France
关键词
Variational inclusion; Proximal point method; Monotone vector fields; DC functions; Hadamard manifolds; ALGORITHM; OPERATORS; CONVERGENCE;
D O I
10.1007/s10898-022-01240-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose an inertial proximal point method for variational inclusion involving difference of two maximal monotone vector fields in Hadamard manifolds. We prove that if the sequence generated by the method is bounded, then every cluster point is a solution of the non-monotone variational inclusion. Some sufficient conditions for boundedness and full convergence of the sequence are presented. The efficiency of the method is verified by numerical experiments comparing its performance with classical versions of the method for monotone and non-monotone problems.
引用
收藏
页码:941 / 968
页数:28
相关论文
共 38 条
  • [11] Bhatia R, 2007, PRINC SER APPL MATH, P1
  • [12] Boumal N, 2014, J MACH LEARN RES, V15, P1455
  • [13] An Inertial Algorithm for DC Programming
    de Oliveira, Welington
    Tcheou, Michel P.
    [J]. SET-VALUED AND VARIATIONAL ANALYSIS, 2019, 27 (04) : 895 - 919
  • [14] Do Carmo M.P., 1992, RIEMANNIAN GEOMETRY, VVolume 6
  • [15] Douglas J., 1956, T AM MATH SOC, V82, P421, DOI 10.1090/tran/1956-082-02
  • [16] Ferreira O.P., 2021, ARXIV
  • [17] Proximal point algorithm on Riemannian manifolds
    Ferreira, OP
    Oliveira, PR
    [J]. OPTIMIZATION, 2002, 51 (02) : 257 - 270
  • [18] Convergence Analysis of Difference-of-Convex Algorithm with Subanalytic Data
    Hoai An Le Thi
    Van Ngai Huynh
    Tao Pham Dinh
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 179 (01) : 103 - 126
  • [19] Lang S., 1999, GRADUATE TEXTS MATH, V191
  • [20] Statistics on the manifold of multivariate normal distributions: Theory and application to Diffusion Tensor MRI processing
    Lenglet, Christophe
    Rousson, Mikael
    Deriche, Rachid
    Faugeras, Olivier
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (03) : 423 - 444