An inertial proximal point method for difference of maximal monotone vector fields in Hadamard manifolds

被引:4
作者
Andrade, Joao S. [1 ,2 ]
Lopes, Jurandir de O. [2 ]
Souza, Joao Carlos de O. [2 ,3 ]
机构
[1] Univ Fed Piaui, CSHNB, BR-64607670 Picos, PI, Brazil
[2] Univ Fed Piaui, Dept Math, CCN, BR-64049550 Teresina, PI, Brazil
[3] Aix Marseille Univ, AMSE, CNRS, Marseille, France
关键词
Variational inclusion; Proximal point method; Monotone vector fields; DC functions; Hadamard manifolds; ALGORITHM; OPERATORS; CONVERGENCE;
D O I
10.1007/s10898-022-01240-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose an inertial proximal point method for variational inclusion involving difference of two maximal monotone vector fields in Hadamard manifolds. We prove that if the sequence generated by the method is bounded, then every cluster point is a solution of the non-monotone variational inclusion. Some sufficient conditions for boundedness and full convergence of the sequence are presented. The efficiency of the method is verified by numerical experiments comparing its performance with classical versions of the method for monotone and non-monotone problems.
引用
收藏
页码:941 / 968
页数:28
相关论文
共 38 条
  • [1] Inertial proximal algorithm for difference of two maximal monotone operators
    Alimohammady, M.
    Ramazannejad, M.
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2016, 47 (01) : 1 - 8
  • [2] Notes on the difference of two monotone operators
    Alimohammady, M.
    Ramazannejad, M.
    Roohi, M.
    [J]. OPTIMIZATION LETTERS, 2014, 8 (01) : 81 - 84
  • [3] A modified proximal point method for DC functions on Hadamard manifolds
    Almeida, Yldenilson Torres
    da Cruz Neto, Joao Xavier
    Oliveira, Paulo Roberto
    Souza, Joao Carlos de Oliveira
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 76 (03) : 649 - 673
  • [4] An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping
    Alvarez, F
    Attouch, H
    [J]. SET-VALUED ANALYSIS, 2001, 9 (1-2): : 3 - 11
  • [5] Ansari QH, 2020, J NONLINEAR CONVEX A, V21, P2417
  • [6] Existence and boundedness of solutions to inclusion problems for maximal monotone vector fields in Hadamard manifolds
    Ansari, Qamrul Hasan
    Babu, Feeroz
    [J]. OPTIMIZATION LETTERS, 2020, 14 (03) : 711 - 727
  • [7] Proximal point algorithm for inclusion problems in Hadamard manifolds with applications
    Ansari, Qamrul Hasan
    Babu, Feeroz
    [J]. OPTIMIZATION LETTERS, 2021, 15 (03) : 901 - 921
  • [8] THE BOOSTED DIFFERENCE OF CONVEX FUNCTIONS ALGORITHM FOR NONSMOOTH FUNCTIONS
    Aragon Artacho, Francisco J.
    Vuong, Phan T.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 980 - 1006
  • [9] Attouch H., 1996, J CONVEX ANAL, V3, P1
  • [10] Proximal point method for a special class of nonconvex functions on Hadamard manifolds
    Bento, G. C.
    Ferreira, O. P.
    Oliveira, P. R.
    [J]. OPTIMIZATION, 2015, 64 (02) : 289 - 319