A Brief Review of Recent Theoretical Advances in Fe-Based Catalysts for CO2 Hydrogenation

被引:6
作者
Tang, Haoxiang [1 ]
Qiu, Tongyue [1 ]
Wang, Xuerui [1 ]
Zhang, Chundong [1 ]
Zhang, Zunmin [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; hydrogenation; Fe-based catalysts; density functional theory; reverse water-gas shift; FISCHER-TROPSCH SYNTHESIS; GAS SHIFT REACTION; IRON-BASED CATALYSTS; LOW-INDEX SURFACES; CARBON-DIOXIDE; ACTIVE-SITES; CONVERSION; ADSORPTION; ACTIVATION; POTASSIUM;
D O I
10.3390/molecules29061194
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Catalytic hydrogenation presents a promising approach for converting CO2 into valuable chemicals and fuels, crucial for climate change mitigation. Iron-based catalysts have emerged as key contributors, particularly in driving the reverse water-gas shift and Fischer-Tropsch synthesis reactions. Recent research has focused on enhancing the efficiency and selectivity of these catalysts by incorporating alkali metal promoters or transition metal dopants, enabling precise adjustments to their composition and properties. This review synthesizes recent theoretical advancements in CO2 hydrogenation with iron-based catalysts, employing density functional theory and microkinetic modeling. By elucidating the underlying mechanisms involving metallic iron, iron oxides, and iron carbides, we address current challenges and provide insights for future sustainable CO2 hydrogenation developments.
引用
收藏
页数:21
相关论文
共 118 条
[31]   Recycling of carbon dioxide to methanol and derived products - closing the loop [J].
Goeppert, Alain ;
Czaun, Miklos ;
Jones, John-Paul ;
Prakash, G. K. Surya ;
Olah, George A. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (23) :7995-8048
[32]   The reverse water gas shift reaction: a process systems engineering perspective [J].
Gonzalez-Castano, Miriam ;
Dorneanu, Bogdan ;
Arellano-Garcia, Harvey .
REACTION CHEMISTRY & ENGINEERING, 2021, 6 (06) :954-976
[33]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[34]   Machine learning in solid heterogeneous catalysis: Recent developments, challenges and perspectives [J].
Guan, Yani ;
Chaffart, Donovan ;
Liu, Guihua ;
Tan, Zhaoyang ;
Zhang, Dongsheng ;
Wang, Yanji ;
Li, Jingde ;
Ricardez-Sandoval, Luis .
CHEMICAL ENGINEERING SCIENCE, 2022, 248
[35]   Identification of active sites for CO2 hydrogenation in Fe catalysts by first-principles microkinetic modelling [J].
Han, Seung Ju ;
Hwang, Sun-Mi ;
Park, Hae-Gu ;
Zhang, Chundong ;
Jun, Ki-Won ;
Kim, Seok Ki .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (26) :13014-13023
[36]   Zeolite-confined Fe-site Catalysts for the Hydrogenation of CO2 to Produce High-value Chemicals [J].
Han, Xiaoyang ;
Xia, Huicong ;
Tu, Weifeng ;
Wei, Yifan ;
Xue, Dongping ;
Li, Minhan ;
Yan, Wenfu ;
Zhang, Jia-Nan ;
Han, Yi-Fan .
CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2024, 40 (01) :78-95
[37]   Interfacing with Carbonaceous Potassium Promoters Boosts Catalytic CO2 Hydrogenation of Iron [J].
Han, Yu ;
Fang, Chuanyan ;
Ji, Xuewei ;
Wei, Jian ;
Ge, Qingjie ;
Sun, Jian .
ACS CATALYSIS, 2020, 10 (20) :12098-12108
[38]   Synthesis of liquid fuel via direct hydrogenation of CO2 [J].
He, Zhenhong ;
Cui, Meng ;
Qian, Qingli ;
Zhang, Jingjing ;
Liu, Huizhen ;
Han, Buxing .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (26) :12654-12659
[39]   The technological and economic prospects for CO2 utilization and removal [J].
Hepburn, Cameron ;
Adlen, Ella ;
Beddington, John ;
Carter, Emily A. ;
Fuss, Sabine ;
Mac Dowell, Niall ;
Minx, Jan C. ;
Smith, Pete ;
Williams, Charlotte K. .
NATURE, 2019, 575 (7781) :87-97
[40]   Small but Strong Lessons from Chemistry for Nanoscience [J].
Hoffmann, Roald .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :93-103