MATRIX REPRESENTATION OF FINITE EFFECT ALGEBRAS

被引:1
作者
Binczak, Grzegorz [1 ]
Kaleta, Joanna [2 ]
Zembrzuski, Andrzej [3 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Dept Algebra & Combinator, PL-00662 Warsaw, Poland
[2] Warsaw Univ Life Sci, Fac Appl Informat & Math, Dept Appl Math, PL-02787 Warsaw, Poland
[3] Warsaw Univ Life Sci, Fac Appl Informat & Math, Dept Informat, PL-02787 Warsaw, Poland
关键词
effect algebra; state of effect algebra;
D O I
10.14736/kyb-2023-5-0737
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we present representation of finite effect algebras by matrices. For each nontrivial finite effect algebra E we construct set of matrices M(E) in such a way that effect algebras E1 and E2 are isomorphic if and only if M(E1) = M(E2). The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most 8.
引用
收藏
页码:737 / 751
页数:15
相关论文
共 12 条
[1]  
[Anonymous], 2008, US
[2]  
[Anonymous], About us
[3]  
Bush P., 1991, Lecture Notes in Physics Monographs, V2, DOI [10.1007/978-3-662-13844-1, DOI 10.1007/978-3-662-13844-1]
[4]  
Bush P., 1995, Operational Quantum Physics, DOI [10.1007/978-3-540-49239-9, DOI 10.1007/978-3-540-49239-9]
[5]  
Dvureenskij A., 2000, MATH APPL
[6]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352
[7]   TOWARD A FORMAL LANGUAGE FOR UNSHARP PROPERTIES [J].
GIUNTINI, R ;
GREULING, H .
FOUNDATIONS OF PHYSICS, 1989, 19 (07) :931-945
[8]  
Greechie R.J., 1971, J. Comb. Theory Ser. A, V10, P119, DOI DOI 10.1016/0097-3165(71)90015-X
[9]   Effect test spaces and effect algebras [J].
Gudder, S .
FOUNDATIONS OF PHYSICS, 1997, 27 (02) :287-304
[10]   Characterization of homogeneity in orthocomplete atomic effect algebras [J].
Ji, Wei .
FUZZY SETS AND SYSTEMS, 2014, 236 :113-121