Depth Optimization for Accurate 3D Reconstruction from Light Field Images

被引:0
作者
Wang, Xuechun [1 ]
Chao, Wentao [1 ]
Duan, Fuqing [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II | 2024年 / 14426卷
关键词
Light field; Depth map; Optimization; 3D reconstruction;
D O I
10.1007/978-981-99-8432-9_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because the light field camera can capture both the position and direction of light simultaneously, it enables us to estimate the depth map from a single light field image and subsequently obtain the 3D point cloud structure. However, the reconstruction results based on light field depth estimation often contain holes and noisy points, which hampers the clarity of the reconstructed 3D object structure. In this paper, we propose a depth optimization algorithm to achieve a more accurate depth map. We introduce a depth confidence metric based on the photo consistency of the refocused angular sampling image. By utilizing this confidence metric, we detect the outlier points in the depth map and generate an outlier mask map. Finally, we optimize the depth map using the proposed energy function. Experimental results demonstrate the superiority of our method compared to other algorithms, particularly in addressing issues related to holes, boundaries, and noise.
引用
收藏
页码:79 / 90
页数:12
相关论文
共 50 条
[31]   Fast and Accurate 3D Reconstruction using a Moving Depth Camera and Inertial Sensor [J].
Zhang, Guoshan ;
Huang, Weijie ;
Shen, Yuanyuan ;
Wang, Xinbo .
2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, :1255-1260
[32]   Learning Reliable Gradients From Undersampled Circular Light Field for 3D Reconstruction [J].
Song, Zhengxi ;
Wang, Xue ;
Zhu, Hao ;
Zhou, Guoqing ;
Wang, Qing .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (12) :5194-5207
[33]   Depth Range Control in Visually Equivalent Light Field 3D [J].
Date, Munekazu ;
Shimizu, Shinya ;
Kimata, Hideaki ;
Mikami, Dan ;
Kusachi, Yoshinori .
IEICE TRANSACTIONS ON ELECTRONICS, 2021, E104C (02) :52-58
[34]   3D reconstruction by a combined structure tensor and Hough transform light field approach [J].
Vianello, Alessandro ;
Manfredi, Giulio ;
Diebold, Maximilian ;
Jaehne, Bernd .
TM-TECHNISCHES MESSEN, 2017, 84 (7-8) :460-478
[35]   Depth-of-field extension and 3D reconstruction in digital holographic microscopy [J].
Bergoend, Isabelle ;
Colomb, Tristan ;
Pavillon, Nicolas ;
Emery, Yves ;
Depeursinge, Christian .
MODELING ASPECTS IN OPTICAL METROLOGY II, 2009, 7390
[36]   Iterative Online 3D Reconstruction from RGB Images [J].
Cardoen, Thorsten ;
Leroux, Sam ;
Simoens, Pieter .
SENSORS, 2022, 22 (24)
[37]   Automated reconstruction of 3D scenes from sequences of images [J].
Pollefeys, M ;
Koch, R ;
Vergauwen, M ;
Van Gool, L .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2000, 55 (04) :251-267
[38]   Reconstruction of 3D configuration of object from infrared images [J].
Fan, Y ;
Wang, DZ .
VISUAL INFORMATION PROCESSING V, 1996, 2753 :134-138
[39]   3D Reconstruction of Colon Segments from Colonoscopy Images [J].
Hong, DongHo ;
Tavanapong, Wallapak ;
Wong, Johnny ;
Oh, JungHwan ;
de Groen, Piet C. .
2009 9TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, 2009, :53-+
[40]   3D Reconstruction of Lungs from Computed Tomography Images [J].
Koszmider, Tomasz ;
Strzecha, Krzysztof .
MEMSTECH: 2009 INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN, 2009, :77-80