Molecular Docking and ADME-TOX Profiling of Moringa oleifera Constituents against SARS-CoV-2

被引:0
作者
Souza, Hellen Cris Araujo [1 ]
Souza, Maycon Douglas Araujo [1 ]
Sousa, Cassio Silva [1 ]
Viana, Edilanne Katrine Amparo [1 ]
Alves, Sabrina Kelly Silva [1 ]
Marques, Alex Oliveira [1 ]
Ribeiro, Arthur Serejo Neves [1 ]
do Vale, Vanessa de Sousa [1 ]
Islam, Muhammad Torequl [2 ]
de Miranda, Joao Antonio Leal [3 ]
Mota, Marcelo da Costa [1 ]
Rocha, Jefferson Almeida [1 ]
机构
[1] Fed Univ Maranhao UFMA, Sao Bernardo Sci Ctr, Med Chem & Biotechnol Res Grp QUIMEBIO, BR-65080805 Sao Bernardo, MA, Brazil
[2] Bangabandhu Sheikh Mujibur Rahman Sci & Technol Un, Dept Pharm, Gopalganj 8100, Bangladesh
[3] Fed Univ Piaui UFPI, Senador Helvidio Nunes Barros Ctr, Dept Med, BR-64607670 Picos, PI, Brazil
关键词
antiviral activity; SARS-CoV-2; Moringa oleifera; computational medicinal chemistry; ELLAGIC ACID; INTESTINAL-ABSORPTION; BIOLOGICAL-ACTIVITIES; MEDICINAL-PLANTS; LEAVES; PROTEIN; CORONAVIRUS; QUERCETIN; LUTEOLIN; BLOCKING;
D O I
10.3390/arm91060035
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2019) etiological agent, which has a high contagiousness and is to blame for the outbreak of acute viral pneumonia, is the cause of the respiratory disease COVID-19. The use of natural products grew as an alternative treatment for various diseases due to the abundance of organic molecules with pharmacological properties. Many pharmaceutical studies have focused on investigating compounds with therapeutic potential. Therefore, this study aimed to identify potential antiviral compounds from a popular medicinal plant called Moringa oleifera Lam. against the spike, M-pro, ACE2, and RBD targets of SARS-CoV-2. For this, we use molecular docking to identify the molecules with the greatest affinity for the targets through the orientation of the ligand with the receptor in complex. For the best results, ADME-TOX predictions were performed to evaluate the pharmacokinetic properties of the compounds using the online tool pkCSM. The results demonstrate that among the 61 molecules of M. oleifera, 22 molecules showed promising inhibition results, where the compound ellagic acid showed significant molecular affinity (-9.3 kcal.mol(-1)) in interaction with the spike protein. These results highlight the relevance of investigating natural compounds from M. oleifera as potential antivirals against SARS-CoV-2; however, additional studies are needed to confirm the antiviral activity of the compounds.
引用
收藏
页码:464 / 485
页数:22
相关论文
共 94 条
  • [1] An ethnobotanical study of medicinal plants and traditional therapies on Batan Island, the Philippines
    Abe, Reika
    Ohtani, Kazuhiro
    [J]. JOURNAL OF ETHNOPHARMACOLOGY, 2013, 145 (02) : 554 - 565
  • [2] Antioxidant flavonoid glycosides from the leaves of Ficus pumila L.
    Abraham, Leong Cheng Ning
    Masakuni, Tako
    Isao, Hanashiro
    Hajime, Tamaki
    [J]. FOOD CHEMISTRY, 2008, 109 (02) : 415 - 420
  • [3] Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens
    Ahmad, I
    Beg, AZ
    [J]. JOURNAL OF ETHNOPHARMACOLOGY, 2001, 74 (02) : 113 - 123
  • [4] Ahmadu T., 2021, Braz. J. Biol., V81, P1007, DOI 10.1590/1519-6984.233173
  • [5] Aini Nur Sofiatul, 2022, Pharmacognosy Journal, V14, P267, DOI 10.5530/pj.2022.14.95
  • [6] Coronavirus main proteinase (3CLpro) structure:: Basis for design of anti-SARS drugs
    Anand, K
    Ziebuhr, J
    Wadhwani, P
    Mesters, JR
    Hilgenfeld, R
    [J]. SCIENCE, 2003, 300 (5626) : 1763 - 1767
  • [7] Moringa oleifera:: A food plant with multiple medicinal uses
    Anwar, Farooq
    Latif, Sajid
    Ashraf, Muhammad
    Gilani, Anwarul Hassan
    [J]. PHYTOTHERAPY RESEARCH, 2007, 21 (01) : 17 - 25
  • [8] Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds
    Anzano, Attilio
    de Falco, Bruna
    Ammar, Mohammad
    Ricciardelli, Annarita
    Grauso, Laura
    Sabbah, Mohammed
    Capparelli, Rosanna
    Lanzotti, Virginia
    [J]. MOLECULES, 2022, 27 (24):
  • [9] Araruna MKA, 2012, INDIAN J MED RES, V135, P252
  • [10] Araujo J.L., 2020, Int. J. Dev. Res, V10, P37117