Integral relation in zero-pressure-gradient boundary layer flows

被引:2
|
作者
Wei, Tie [1 ]
Klewicki, Joseph [2 ]
机构
[1] New Mex Inst Min & Technol, Dept Mech Engn, Socorro, NM 87801 USA
[2] Univ Melbourne, Sch Elect Mech & Infrastruct Engn, Parkville, Vic, Australia
关键词
DIRECT NUMERICAL-SIMULATION; VELOCITY;
D O I
10.1103/PhysRevFluids.8.124601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In their 2016 paper, Wei and Klewicki [Phys. Rev. Fluids 1, 082401 (2016)] developed an integral relation, UeVe/u2 tau = H12, which connects key parameters in zero-pressure-gradient (ZPG) boundary layer flows: mean velocity components Ue and Ve at the boundary layer edge, and friction velocity u tau to shape factor H12. While this relation holds exactly for ZPG laminar boundary layers featuring self-similar streamwise velocity profiles, it is an approximation for ZPG turbulent boundary layers (TBLs), with its accuracy improving as the Reynolds number increases. In this paper, we present a correction to the original integral relation, providing an exact integral relation that is applicable to ZPG boundary layer flows at arbitrary Reynolds numbers. The correction comprises two terms: one addressing deviations from self-similarity in mean streamwise velocity, and the other considering the impact of Reynolds normal stresses. Experimental and numerical data are shown to support the relative insignificance of the newly identified correction terms, except for Reynolds numbers in the transitional regime.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Zero-pressure-gradient turbulent boundary layer
    George, William K.
    Castillo, Luciano
    Applied Mechanics Reviews, 1997, 50 (12 pt 1): : 689 - 729
  • [2] Structure of the zero-pressure-gradient turbulent boundary layer
    Barenblatt, GI
    Chorin, AJ
    Hald, OH
    Prostokishin, VM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (15) : 7817 - 7819
  • [3] On the asymptotic similarity of the zero-pressure-gradient turbulent boundary layer
    Jones, M. B.
    Nickels, T. B.
    Marusic, Ivan
    JOURNAL OF FLUID MECHANICS, 2008, 616 : 195 - 203
  • [4] Effects of surface corrugation on the stability of a zero-pressure-gradient boundary layer
    Ma'mun, Mochamad Dady
    Asai, Masahito
    Inasawa, Ayumu
    JOURNAL OF FLUID MECHANICS, 2014, 741 : 228 - 251
  • [5] POLYMER DRAG REDUCTION OF A ZERO-PRESSURE-GRADIENT BOUNDARY-LAYER
    KOSKIE, JE
    TIEDERMAN, WG
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (10): : 2471 - 2473
  • [6] Geometrical structure analysis of a zero-pressure-gradient turbulent boundary layer
    Li, Weipeng
    Wang, Lipo
    JOURNAL OF FLUID MECHANICS, 2018, 846 : 318 - 340
  • [7] Coherent structures in a zero-pressure-gradient and a strongly decelerated boundary layer
    Simens, Mark P.
    Gungor, Ayse G.
    Maciel, Yvan
    2ND MULTIFLOW SUMMER SCHOOL ON TURBULENCE, 2016, 708
  • [8] Incompressible zero-pressure-gradient turbulent boundary layer: An assessment of the data
    Fernholz, HH
    Finley, PJ
    PROGRESS IN AEROSPACE SCIENCES, 1996, 32 (04) : 245 - 311
  • [9] MEASUREMENTS OF A ZERO-PRESSURE-GRADIENT BOUNDARY-LAYER BLOWN BY AN ASYMMETRIC JET
    SARIPALLI, KR
    SIMPSON, RL
    AIAA JOURNAL, 1985, 23 (04) : 490 - 491
  • [10] Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks
    Department of Mechanical Engineering, Imperial College, London SW7 2AZ, United Kingdom
    J. Fluid Mech., (116-153):