Machine learning facilitates the prediction of long-term mortality in patients with tricuspid regurgitation

被引:7
作者
Deb, Brototo [1 ]
Scott, Christopher [2 ]
Pislaru, Sorin, V [3 ]
Nkomo, Vuyisile T. [3 ]
Kane, Garvan Christopher [3 ]
Alkhouli, Mohamad [3 ]
Crestanello, Juan A. [4 ]
Arruda-Olson, Adelaide [3 ]
Pellikka, Patricia A. [3 ]
Anand, Vidhu [3 ,5 ]
机构
[1] Georgetown Univ, Internal Med, Washington, DC 20057 USA
[2] Mayo Clin, Biostat, Rochester, MN USA
[3] Mayo Clin, Cardiovasc Med, Rochester, MN USA
[4] Mayo Clin, Cardiovasc Surg, Rochester, MN USA
[5] Mayo Clin Hlth Syst, Dept Cardiovasc Med, Eau Claire, WI 53704 USA
关键词
Echocardiography; Tricuspid Valve Insufficiency; Translational Medical Research; Electronic Health Records; IMPACT; OUTCOMES; REPAIR;
D O I
10.1136/openhrt-2023-002417
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
ObjectiveTricuspid regurgitation (TR) is a prevalent valve disease associated with significant morbidity and mortality. We aimed to apply machine learning (ML) to assess risk stratification in patients with >= moderate TR.MethodsPatients with >= moderate TR on echocardiogram between January 2005 and December 2016 were retrospectively included. We used 70% of data to train ML-based survival models including 27 clinical and echocardiographic features to predict mortality over a 3-year period on an independent test set (30%). To account for differences in baseline comorbidities, prediction was performed in groups stratified by increasing Charlson Comorbidity Index (CCI). Permutation feature importance was calculated using the best-performing model separately in these groups.ResultsOf 13 312 patients, mean age 72 +/- 13 years and 7406 (55%) women, 7409 (56%) had moderate, 2646 (20%) had moderate-severe and 3257 (24%) had severe TR. The overall performance for 1-year mortality by 3 ML models was good, c-statistic 0.74-0.75. Interestingly, performance varied between CCI groups, (c-statistic = 0.774 in lowest CCI group and 0.661 in highest CCI group). The performance decreased over 3-year follow-up (average c-index 0.78). Furthermore, the top 10 features contributing to these predictions varied slightly with the CCI group, the top features included heart rate, right ventricular systolic pressure, blood pressure, diuretic use and age.ConclusionsMachine learning of common clinical and echocardiographic features can evaluate mortality risk in patients with TR. Further refinement of models and validation in prospective studies are needed before incorporation into the clinical practice.
引用
收藏
页数:6
相关论文
共 30 条
[1]   Effects of functional tricuspid regurgitation on renal function and long-term prognosis in patients with heart failure [J].
Agricola, Eustachio ;
Marini, Claudia ;
Stella, Stefano ;
Monello, Alberto ;
Fisicaro, Andrea ;
Tufaro, Vincenzo ;
Slavich, Massimo ;
Oppizzi, Michele ;
Castiglioni, Alessandro ;
Cappelletti, Alberto ;
Margonato, Alberto .
JOURNAL OF CARDIOVASCULAR MEDICINE, 2017, 18 (02) :60-68
[2]   Machine learning-based risk stratification for mortality in patients with severe aortic regurgitation [J].
Anand, Vidhu ;
Hu, Hanwen ;
Weston, Alexander D. ;
Scott, Christopher G. ;
Michelena, Hector, I ;
Pislaru, Sorin, V ;
Carter, Rickey E. ;
Pellikka, Patricia A. .
EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (03) :188-195
[3]   The 5 Phenotypes of Tricuspid Regurgitation Insight From Cluster Analysis of Clinical and Echocardiographic Variables [J].
Anand, Vidhu ;
Scott, Christopher G. ;
Hyun, Meredith C. ;
Lara-Breitinger, Kyla ;
Nkomo, Vuyisile T. ;
Kane, Garvan C. ;
Pislaru, Cristina ;
Kopecky, Kathleen F. ;
Schulte, Phillip J. ;
V. Pislaru, Sorin .
JACC-CARDIOVASCULAR INTERVENTIONS, 2023, 16 (02) :156-165
[4]   Graphical calibration curves and the integrated calibration index (ICI) for survival models [J].
Austin, Peter C. ;
Harrell, Frank E., Jr. ;
van Klaveren, David .
STATISTICS IN MEDICINE, 2020, 39 (21) :2714-2742
[5]   Surgery Does Not Improve Survival in Patients With Isolated Severe Tricuspid Regurgitation [J].
Axtell, Andrea L. ;
Bhambhani, Vijeta ;
Moonsamy, Philicia ;
Healy, Emma W. ;
Picard, Michael H. ;
Sundt, Thoralf M., III ;
Wasfy, Jason H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 74 (06) :715-725
[6]   Excess Mortality Associated With Functional Tricuspid Regurgitation Complicating Heart Failure With Reduced Ejection Fraction [J].
Benfari, Giovanni ;
Antoine, Clemence ;
Miller, Wayne L. ;
Thapa, Prabin ;
Topilsky, Yan ;
Rossi, Andrea ;
Michelena, Hector I. ;
Pislaru, Sorin ;
Enriquez-Sarano, Maurice .
CIRCULATION, 2019, 140 (03) :196-206
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]   Impact of Concomitant Tricuspid Annuloplasty on Tricuspid Regurgitation, Right Ventricular Function, and Pulmonary Artery Hypertension After Repair of Mitral Valve Prolapse [J].
Chikwe, Joanna ;
Itagaki, Shinobu ;
Anyanwu, Anelechi ;
Adams, David H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 65 (18) :1931-1938
[9]   Tricuspid regurgitation and long-term clinical outcomes [J].
Chorin, Ehud ;
Rozenbaum, Zach ;
Topilsky, Yan ;
Konigstein, Maayan ;
Ziv-Baran, Tomer ;
Richert, Eyal ;
Keren, Gad ;
Banai, Shmuel .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2020, 21 (02) :157-165
[10]   TRI-SCORE: a new risk score for in-hospital mortality prediction after isolated tricuspid vale surgery [J].
Dreyfus, Julien ;
Audureau, Etienne ;
Bohbot, Yohann ;
Coisne, Augustin ;
Lavie-Badie, Yoan ;
Bouchery, Maxime ;
Flagiello, Michele ;
Bazire, Baptiste ;
Eggenspieler, Florian ;
Viau, Florence ;
Riant, Elisabeth ;
Mbaki, Yannick ;
Eyharts, Damien ;
Senage, Thomas ;
Modine, Thomas ;
Nicol, Martin ;
Doguet, Fabien ;
Nguyen, Virginia ;
Le Tourneau, Thierry ;
Tribouilloy, Christophe ;
Donal, Erwan ;
Tomasi, Jacques ;
Habib, Gilbert ;
Selton-Suty, Christine ;
Raffoul, Richard ;
Iung, Bernard ;
Obadia, Jean-Francois ;
Messika-Zeitoun, David .
EUROPEAN HEART JOURNAL, 2022, 43 (07) :654-662