Mixed-integer exponential conic optimization for reliability enhancement of power distribution systems

被引:0
|
作者
Filabadi, Milad Dehghani [1 ]
Chen, Chen [1 ]
Conejo, Antonio [1 ,2 ]
机构
[1] Ohio State Univ, ISE, Columbus, OH 43210 USA
[2] Ohio State Univ, ECE, Columbus, OH USA
关键词
Mixed-integer exponential conic optimization; Mixed-integer programming; Distribution systems; Reliability; SWITCH PLACEMENT; SECTIONALIZING SWITCHES; NETWORK RECONFIGURATION; TIE-LINES; ALLOCATION; AUTOMATION; DEVICE; MODEL;
D O I
10.1007/s11081-023-09876-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops an optimization model for determining the placement of switches, tie lines, and underground cables in order to enhance the reliability of an electric power distribution system. A central novelty in the model is the inclusion of nodal reliability constraints, which consider network topology and are important in practice. The model can be reformulated either as a mixed-integer exponential conic optimization problem or as a mixed-integer linear program. We demonstrate both theoretically and empirically that the judicious application of partial linearization is key to rendering a practically tractable formulation. Computational studies indicate that realistic instances can indeed be solved in a reasonable amount of time on standard hardware.
引用
收藏
页码:2177 / 2203
页数:27
相关论文
共 50 条
  • [31] A mixed-integer optimization approach for polygeneration energy systems design
    Liu, Pei
    Pistikopoulos, Efstratios N.
    Li, Zheng
    COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (03) : 759 - 768
  • [32] Granularity in Nonlinear Mixed-Integer Optimization
    Neumann, Christoph
    Stein, Oliver
    Sudermann-Merx, Nathan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 184 (02) : 433 - 465
  • [33] Granularity in Nonlinear Mixed-Integer Optimization
    Christoph Neumann
    Oliver Stein
    Nathan Sudermann-Merx
    Journal of Optimization Theory and Applications, 2020, 184 : 433 - 465
  • [34] Global mixed-integer dynamic optimization
    Chachuat, B
    Singer, AB
    Barton, PI
    AICHE JOURNAL, 2005, 51 (08) : 2235 - 2253
  • [35] Mixed-Integer Optimization with Constraint Learning
    Maragno, Donato
    Wiberg, Holly
    Bertsimas, Dimitris
    Birbil, S. . Ilker
    den Hertog, Dick
    Fajemisin, Adejuyigbe O.
    OPERATIONS RESEARCH, 2023,
  • [36] Online Mixed-Integer Optimization in Milliseconds
    Bertsimas, Dimitris
    Stellato, Bartolomeo
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (04) : 2229 - 2248
  • [37] Distribution-aware counterfactual explanation by mixed-integer linear optimization
    Kanamori K.
    Takagi T.
    Kobayashi K.
    Arimura H.
    Transactions of the Japanese Society for Artificial Intelligence, 2021, 36 (06)
  • [38] A Flexible Mixed-Integer Linear Programming Approach to the AC Optimal Power Flow in Distribution Systems
    Ferreira, Rafael S.
    Borges, Carmen L. T.
    Pereira, Mario V. F.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2014, 29 (05) : 2447 - 2459
  • [39] Constrained optimal power flow by mixed-integer particle swarm optimization
    Gaing, ZL
    2005 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS, 1-3, 2005, : 243 - 250
  • [40] Cost-Sensitive Best Subset Selection for Logistic Regression: A Mixed-Integer Conic Optimization Perspective
    Knauer, Ricardo
    Rodner, Erik
    ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2023, 2023, 14236 : 114 - 129