Data-driven dynamic relatively optimal control

被引:4
作者
Pellegrino, Felice A. [1 ]
Blanchini, Franco [2 ]
Fenu, Gianfranco [1 ]
Salvato, Erica [1 ]
机构
[1] Univ Trieste, Dept Engn & Architecture, Via Alfonso Valerio 6-1, I-34100 Trieste, Italy
[2] Univ Udine, Dipartimento Sci Matemat Informat & Fis, Via Sci 206, I-33100 Udine, Italy
关键词
Stabilizing feedback control; Data-driven control; Linear systems;
D O I
10.1016/j.ejcon.2023.100839
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We show how the recent works on data-driven open-loop minimum-energy control for linear systems can be exploited to obtain closed-loop control laws in the form of linear dynamic controllers that are relatively optimal. Besides being stabilizing, they achieve the optimal minimum-energy trajectory when the initial condition is the same as the open-loop optimal control problem. The order of the controller is N - n , where N is the length of the optimal open-loop trajectory, and n is the order of the system. The same idea can be used for obtaining a relatively optimal controller, entirely based on data, from open-loop trajectories starting from up to n linearly independent initial conditions. (c) 2023 The Authors. Published by Elsevier Ltd on behalf of European Control Association. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:6
相关论文
共 19 条
[11]  
Coulson J, 2019, IEEE DECIS CONTR P, P2696, DOI 10.1109/CDC40024.2019.9028943
[12]  
Coulson J, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P307, DOI [10.23919/ECC.2019.8795639, 10.23919/ecc.2019.8795639]
[13]  
De Persis C., 2021, arXiv
[14]   Low-complexity learning of Linear Quadratic Regulators from noisy data [J].
De Persis, Claudio ;
Tesi, Pietro .
AUTOMATICA, 2021, 128
[15]   Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness [J].
De Persis, Claudio ;
Tesi, Pietro .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) :909-924
[16]  
Pellegrino FA, 2022, 2022 EUROPEAN CONTROL CONFERENCE (ECC), P1379, DOI 10.23919/ECC55457.2022.9838344
[17]   Data-driven Linear Quadratic Regulation via Semidefinite Programming [J].
Rotulo, Monica ;
De Persis, Claudio ;
Tesi, Pietro .
IFAC PAPERSONLINE, 2020, 53 (02) :3995-4000
[18]   A note on persistency of excitation [J].
Willems, JC ;
Rapisarda, P ;
Markovsky, I ;
De Moor, BLM .
SYSTEMS & CONTROL LETTERS, 2005, 54 (04) :325-329
[19]  
Yang H, 2015, ASIA CONTROL CONF AS