THE LIE DERIVATIVE AND NOETHER'S THEOREM ON THE AROMATIC BICOMPLEX FOR THE STUDY OF VOLUME-PRESERVING NUMERICAL INTEGRATORS

被引:1
作者
Laurent, Adrien [1 ,2 ]
机构
[1] Univ Rennes, INRIA, MINGuS, IRMAR,CNRS,UMR 6625, Rennes, France
[2] ENS Rennes, Rennes, France
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2024年 / 11卷 / 01期
关键词
Aromatic bicomplex; Euler-Lagrange complex; Noether's theorem; aromatic Lie derivative; solenoidal forms; volume-preservation; geometric numerical integration; HOPF-ALGEBRAS; DISCRETIZATION;
D O I
10.3934/jcd.2023011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aromatic bicomplex is an algebraic tool based on aromatic Butcher trees and used in particular for the explicit description of volume-preserving affine-equivariant numerical integrators. The present work defines new tools inspired from variational calculus such as the Lie derivative, dif-ferent concepts of symmetries, and Noether's theory in the context of aro-matic forests. The approach allows to draw a correspondence between aromatic volume-preserving methods and symmetries on the Euler-Lagrange complex, to write Noether's theorem in the aromatic context, and to describe the aromatic B-series of volume-preserving methods explicitly with the Lie derivative.
引用
收藏
页码:10 / 22
页数:13
相关论文
共 39 条
[31]  
McLachlan R. I., 2017, ASIA PAC MATH NEWSL, V7, P1
[32]   B-series methods are exactly the affine equivariant methods [J].
McLachlan, Robert I. ;
Modin, Klas ;
Munthe-Kaas, Hans ;
Verdier, Olivier .
NUMERISCHE MATHEMATIK, 2016, 133 (03) :599-622
[33]   Aromatic Butcher Series [J].
Munthe-Kaas, Hans ;
Verdier, Olivier .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (01) :183-215
[34]  
Munthe-Kaas HZ., 2018, DISCRETE MECH GEOMET, V267, P71
[35]  
Noether E., 1971, TRANSPORT THEOR STAT, V1, P186, DOI [DOI 10.1080/00411457108231446, 10.1080/00411457108231446]
[36]  
Olver Peter, 2000, Applications of Lie Groups to Differential Equations, V107
[37]   On the Lie enveloping algebra of a pre-Lie algebra [J].
Oudom, J. -M. ;
Guin, D. .
JOURNAL OF K-THEORY, 2008, 2 (01) :147-167
[38]   An operadic approach to substitution in Lie-Butcher series [J].
Rahm, Ludwig .
FORUM OF MATHEMATICS SIGMA, 2022, 10
[39]   On a Pre-Lie Algebra Defined by Insertion of Rooted Trees [J].
Saidi, Abdellatif .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 92 (02) :181-196