THE LIE DERIVATIVE AND NOETHER'S THEOREM ON THE AROMATIC BICOMPLEX FOR THE STUDY OF VOLUME-PRESERVING NUMERICAL INTEGRATORS

被引:1
作者
Laurent, Adrien [1 ,2 ]
机构
[1] Univ Rennes, INRIA, MINGuS, IRMAR,CNRS,UMR 6625, Rennes, France
[2] ENS Rennes, Rennes, France
来源
JOURNAL OF COMPUTATIONAL DYNAMICS | 2024年 / 11卷 / 01期
关键词
Aromatic bicomplex; Euler-Lagrange complex; Noether's theorem; aromatic Lie derivative; solenoidal forms; volume-preservation; geometric numerical integration; HOPF-ALGEBRAS; DISCRETIZATION;
D O I
10.3934/jcd.2023011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aromatic bicomplex is an algebraic tool based on aromatic Butcher trees and used in particular for the explicit description of volume-preserving affine-equivariant numerical integrators. The present work defines new tools inspired from variational calculus such as the Lie derivative, dif-ferent concepts of symmetries, and Noether's theory in the context of aro-matic forests. The approach allows to draw a correspondence between aromatic volume-preserving methods and symmetries on the Euler-Lagrange complex, to write Noether's theorem in the aromatic context, and to describe the aromatic B-series of volume-preserving methods explicitly with the Lie derivative.
引用
收藏
页码:10 / 22
页数:13
相关论文
共 39 条
  • [1] LONG TIME ACCURACY OF LIE-TROTTER SPLITTING METHODS FOR LANGEVIN DYNAMICS
    Abdulle, Assyr
    Vilmart, Gilles
    Zygalakis, Konstantinos C.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 1 - 16
  • [2] Anderson I., 1992, Contemporary Math., V132, P51, DOI DOI 10.1090/CONM/132
  • [3] Anderson I.M., 1989, Technical report
  • [4] Arnold V.I., 2006, Mathematical Aspects of Classical and Celestial Mechanics, V3
  • [5] Arnold V.I, 1989, Graduate Texts in Mathematics, V60, DOI DOI 10.1007/978-1-4757-2063-1
  • [6] Bogfjellmo G., 2022, USING AROMAS S UNPUB
  • [7] ALGEBRAIC STRUCTURE OF AROMATIC B-SERIES
    Bogfjellmo, Geir
    [J]. JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02): : 199 - 222
  • [8] Butcher J. C., 1993, Numerical methods for ordinary differential equations
  • [9] BUTCHER JC, 1972, MATH COMPUT, V26, P79, DOI 10.1090/S0025-5718-1972-0305608-0
  • [10] Butcher John Charles, 2021, B SERIES ALGEBRAIC A