DAS-MIL: Distilling Across Scales for MIL Classification of Histological WSIs

被引:8
作者
Bontempo, Gianpaolo [1 ,2 ]
Porrello, Angelo [1 ]
Bolelli, Federico [1 ]
Calderara, Simone [1 ]
Ficarra, Elisa [1 ]
机构
[1] Univ Modena & Reggio Emilia, Modena, Italy
[2] Univ Pisa, Pisa, Italy
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I | 2023年 / 14220卷
基金
欧盟地平线“2020”;
关键词
Whole-slide Images; Multi-instance Learning; Knowledge Distillation; NETWORK;
D O I
10.1007/978-3-031-43907-0_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The adoption of Multi-Instance Learning (MIL) for classifying Whole-Slide Images (WSIs) has increased in recent years. Indeed, pixel-level annotation of gigapixel WSI is mostly unfeasible and time-consuming in practice. For this reason, MIL approaches have been profitably integrated with the most recent deep-learning solutions for WSI classification to support clinical practice and diagnosis. Nevertheless, the majority of such approaches overlook the multi-scale nature of the WSIs; the few existing hierarchical MIL proposals simply flatten the multiscale representations by concatenation or summation of features vectors, neglecting the spatial structure of the WSI. Our work aims to unleash the full potential of pyramidal structured WSI; to do so, we propose a graph-based multi-scale MIL approach, termed DAS-MIL, that exploits message passing to let information flows across multiple scales. By means of a knowledge distillation schema, the alignment between the latent space representation at different resolutions is encouraged while preserving the diversity in the informative content. The effectiveness of the proposed framework is demonstrated on two well-known datasets, where we out-perform SOTA on WSI classification, gaining a +1.9% AUC and +3.3% accuracy on the popular Camelyon16 benchmark. The source code is available at https://github.com/aimagelab/mil4wsi.
引用
收藏
页码:248 / 258
页数:11
相关论文
共 31 条
  • [1] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [2] One DAG to Rule Them All
    Bolelli, Federico
    Allegretti, Stefano
    Grana, Costantino
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3647 - 3658
  • [3] Bucila Cristian, 2006, KDD, P535
  • [4] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [5] Emerging Properties in Self-Supervised Vision Transformers
    Caron, Mathilde
    Touvron, Hugo
    Misra, Ishan
    Jegou, Herve
    Mairal, Julien
    Bojanowski, Piotr
    Joulin, Armand
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9630 - 9640
  • [6] Chen R., 2022, NeurIPS
  • [7] Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning
    Chen, Richard J.
    Chen, Chengkuan
    Li, Yicong
    Chen, Tiffany Y.
    Trister, Andrew D.
    Krishnan, Rahul G.
    Mahmood, Faisal
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16123 - 16134
  • [8] Chen T, 2020, PR MACH LEARN RES, V119
  • [9] Exploring Simple Siamese Representation Learning
    Chen, Xinlei
    He, Kaiming
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15745 - 15753
  • [10] Chen Z, 2021, AAAI CONF ARTIF INTE, V35, P47