Non-Enzymatic CO3O4 Nanostructure-Based Electrochemical Sensor for H2O2 Detection

被引:2
|
作者
Mizers, V. [1 ]
Gerbreders, V. [1 ]
Krasovska, M. [1 ]
Sledevskis, E. [1 ]
Mihailova, I. [1 ]
Ogurcovs, A. [1 ,2 ]
Bulanovs, A. [1 ]
Gerbreders, A. [2 ]
机构
[1] Daugavpils Univ, Inst Life Sci & Technol, G Liberts Innovat Microscopy Ctr, Dept Technol, 1a Parades Str, LV-5401 Daugavpils, Latvia
[2] Univ Latvia, Inst Solid State Phys, 8 Kengaraga Str, LV-1063 Riga, Latvia
关键词
Electrochemical sensor; cobalt oxide; cyclic voltammetry; hydrogen peroxide; nanostructures; GRAPHENE OXIDE NANOCOMPOSITE; HYDROGEN-PEROXIDE H2O2; NANOPARTICLES; WATER; PERFORMANCE; MORPHOLOGY; ELECTRODE; SYSTEM; AU;
D O I
10.2478/lpts-2023-0037
中图分类号
O59 [应用物理学];
学科分类号
摘要
This article describes the synthesis of nanostructured cobalt oxide on iron wires and its application for the detection of hydrogen peroxide as working electrode for non-enzymatic electrochemical sensor. Cobalt oxide was obtained by the hydrothermal synthesis method using chloride and acetate anions. The resulting nanostructured coating obtained from the chloride precursor is a uniform homogeneous porous network of long nanofibers assembled into regular honey & scy;omb-like formations. In the case of an acetate precursor, instead of nanofibers, petal-like nanostructures assembled into honeycomb agglomerates are observed. The structure, surface, and composition of the obtained samples were studied using field-emission scanning electron microscopy along with energy-dispersive spectroscopy and X-ray diffractometry.The resultant nanostructured specimens were utilized to detect H2O2 electrochemically through cyclic voltammetry, differential pulse voltammetry, and i-t measurements. A comparative research has demonstrated that the nanostructures produced from the chloride precursor exhibit greater sensitivity to H2O2 and have a more appropriate morphology for designing a nanostructured sensor. A substantial linear correlation between the peak current and H2O2 concentration within the 20 to 1300 mu M range was established. The Co3O(4) electrode obtained exhibits a sensitivity of 505.11 mu A<middle dot>mM(-1), and the electroactive surface area is calculated to be 4.684 cm(2). Assuming a signal-to-noise ratio of 3, the calculated limit of detection is 1.05 mu M. According to the interference study, the prevalent interfering agents, such as ascorbic acid, uric acid, NaCl, and glucose, do not influence the electrochemical reaction. The obtained results confirm that this sensor is suitable for working with complex analytes.The actual sample assessment demonstrated a recovery rate exceeding 95 %.
引用
收藏
页码:63 / 84
页数:22
相关论文
共 50 条
  • [21] Advances in Non-Enzymatic electrochemical materials for H2O2 sensing
    Liu, Jinzheng
    Li, Mingzhu
    Liu, Wendong
    Hao, Zhe
    Zhang, Fanghua
    Pang, Huajie
    Zhang, Ruizhong
    Zhang, Libing
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 954
  • [22] A flexible and highly selective non-enzymatic H2O2 sensor based on silver nanoparticles embedded into Nafion
    Gholami, Mehrdad
    Koivisto, Bryan
    APPLIED SURFACE SCIENCE, 2019, 467 : 112 - 118
  • [23] Co3O4 microspheres with free-standing nanofibers for high performance non-enzymatic glucose sensor
    Guo, Chunyan
    Zhang, Xuan
    Huo, Huanhuan
    Xu, Cailing
    Han, Xu
    ANALYST, 2013, 138 (22) : 6727 - 6731
  • [24] Catalytic behavior of Co3O4 in electroreduction of H2O2
    Cao, Dianxue
    Chao, Jundang
    Sun, Limei
    Wang, Guiling
    JOURNAL OF POWER SOURCES, 2008, 179 (01) : 87 - 91
  • [25] Hydrothermally synthesized Co3O4 microflakes for supercapacitor and non-enzymatic glucose sensor
    Pore, O. C.
    Fulari, A., V
    Kamble, R. K.
    Shelake, A. S.
    Velhal, N. B.
    Fulari, V. J.
    Lohar, G. M.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (15) : 20742 - 20754
  • [26] Photolithographic 3D microarray electrode-based high-performance non-enzymatic H2O2 sensor
    Li, Xiaojie
    Xu, Mengyi
    Wu, Qian
    Wei, Wei
    Liu, Xiaoya
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 628 (628)
  • [27] Synthesis of NiGa2O4 nanosheets for non-enzymatic glucose electrochemical sensor
    Ding, Longhua
    Yan, Jiahui
    Zhao, Zhongyao
    Li, Dongjun
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 296
  • [28] Metal-organic framework-derived leaf-like and stick-like Co3O4 for electrochemical sensing of H2O2
    Yang, Zhengfei
    Zhong, Yueyue
    Fan, Minghong
    Yin, Yongqi
    Xue, Huaiguo
    Fang, Weiming
    MICROCHEMICAL JOURNAL, 2024, 197
  • [29] Non-enzymatic electrochemical detection of H2O2 by assembly of CuO nanoparticles and black phosphorus nanosheets for early diagnosis of periodontitis
    Wang, Kun
    Sun, Yue
    Xu, Wenzhou
    Zhang, Wei
    Zhang, Fanrou
    Qi, Yu
    Zhang, Yuhong
    Zhou, Qingqing
    Dong, Biao
    Li, Chunyan
    Wang, Lin
    Xu, Lin
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 355
  • [30] Co3O4 based non-enzymatic glucose sensor with high sensitivity and reliable stability derived from hollow hierarchical architecture
    Tian, Liangliang
    He, Gege
    Cai, Yanhua
    Wu, Shenping
    Su, Yongyao
    Yan, Hengqing
    Yang, Cong
    Chen, Yanling
    Li, Lu
    NANOTECHNOLOGY, 2018, 29 (07)