Synthetic versus distributional lower Ricci curvature bounds

被引:0
作者
Kunzinger, Michael [1 ]
Oberguggenberger, Michael [2 ]
Vickers, James A. [3 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Innsbruck, Unit Engn Math, Innsbruck, Austria
[3] Univ Southampton, Sch Math, Southampton, England
基金
奥地利科学基金会;
关键词
low regularity; optimal transport; Ricci curvature bounds; synthetic geometry; tensor distributions; METRIC-MEASURE-SPACES; PENROSE SINGULARITY THEOREM; GEOMETRY;
D O I
10.1017/prm.2023.70
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare two standard approaches to defining lower Ricci curvature bounds for Riemannian metrics of regularity below $C<^>2$. These are, on the one hand, the synthetic definition via weak displacement convexity of entropy functionals in the framework of optimal transport, and the distributional one based on non-negativity of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds imply entropy bounds for metrics of class $C<^>1$ and that the converse holds for $C<^>{1,1}$-metrics under an additional convergence condition on regularizations of the metric.
引用
收藏
页码:1406 / 1430
页数:25
相关论文
共 40 条
  • [31] Bornologically isomorphic representations of distributions on manifolds
    Nigsch, Eduard Albert
    [J]. MONATSHEFTE FUR MATHEMATIK, 2013, 170 (01): : 49 - 63
  • [32] ONEILL B., 1983, Semi-Riemannian geometry with applications to relativity, P103
  • [33] On geodesics in low regularity
    Saemann, Clemens
    Steinbauer, Roland
    [J]. NON-REGULAR SPACETIME GEOMETRY, 2018, 968
  • [34] Schwartz L., 1966, THEORIE DISTRIBUTION
  • [35] The use of generalized functions and distributions in general relativity
    Steinbauer, R.
    Vickers, J. A.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (10) : R91 - R114
  • [36] Steinbauer R., 2008, Novi Sad J. Math, V38, P189
  • [37] Steinbauwer R., 2001, MATH APPL
  • [38] Sturm KT, 2006, ACTA MATH-DJURSHOLM, V196, P65, DOI 10.1007/s11511-006-0002-8
  • [39] Villani C, 2009, GRUNDLEHR MATH WISS, V338, P5
  • [40] Transport inequalities, gradient estimates, entropy, and Ricci curvature
    Von Renesse, MK
    Sturm, KT
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (07) : 923 - 940