Synthetic versus distributional lower Ricci curvature bounds

被引:0
作者
Kunzinger, Michael [1 ]
Oberguggenberger, Michael [2 ]
Vickers, James A. [3 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Innsbruck, Unit Engn Math, Innsbruck, Austria
[3] Univ Southampton, Sch Math, Southampton, England
基金
奥地利科学基金会;
关键词
low regularity; optimal transport; Ricci curvature bounds; synthetic geometry; tensor distributions; METRIC-MEASURE-SPACES; PENROSE SINGULARITY THEOREM; GEOMETRY;
D O I
10.1017/prm.2023.70
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare two standard approaches to defining lower Ricci curvature bounds for Riemannian metrics of regularity below $C<^>2$. These are, on the one hand, the synthetic definition via weak displacement convexity of entropy functionals in the framework of optimal transport, and the distributional one based on non-negativity of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds imply entropy bounds for metrics of class $C<^>1$ and that the converse holds for $C<^>{1,1}$-metrics under an additional convergence condition on regularizations of the metric.
引用
收藏
页码:1406 / 1430
页数:25
相关论文
共 40 条
  • [1] Relating notions of convergence in geometric analysis
    Allen, Brian
    Sormani, Christina
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 200 (200)
  • [2] A User's Guide to Optimal Transport
    Ambrosio, Luigi
    Gigli, Nicola
    [J]. MODELLING AND OPTIMISATION OF FLOWS ON NETWORKS, CETRARO, ITALY 2009, 2013, 2062 : 1 - 155
  • [3] Bar C., 2007, ESI Lectures in Mathematics and Physics
  • [4] Barvinek Erich, 1991, Arch. Math., V027, P201
  • [5] Burago Dmitri, 2001, GRADUATE STUDIES MAT, V33
  • [6] Cavalletti F., PREPRINT
  • [7] CHEEGER J, 1982, J DIFFER GEOM, V17, P15
  • [8] On Lorentzian causality with continuous metrics
    Chrusciel, Piotr T.
    Grant, James D. E.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (14)
  • [9] A Riemannian interpolation inequality a la Borell, Brascamp and Lieb
    Cordero-Erausquin, D
    McCann, RJ
    Schmuckenschläger, M
    [J]. INVENTIONES MATHEMATICAE, 2001, 146 (02) : 219 - 257
  • [10] Dai X., LECT NOTES