Parameter-uniformly convergent numerical scheme for singularly perturbed delay parabolic differential equation via extended B-spline collocation

被引:5
作者
Hassen, Zerihun Ibrahim [1 ]
Duressa, Gemechis File [2 ]
机构
[1] Arba Minch Univ, Dept Math, Arba Minch, Ethiopia
[2] Jimma Univ, Dept Math, Jimma, Ethiopia
关键词
singularly perturbed delay differential equations; extended cubic B-spline collocation scheme; implicit Euler method; artificial viscosity; parabolic convection-diffusion; blending function; CONVECTION-DIFFUSION PROBLEMS; NONUNIFORM MESH; TIME; POPULATION; MODEL;
D O I
10.3389/fams.2023.1255672
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a parameter-uniform numerical method to solve the time dependent singularly perturbed delay parabolic convection-diffusion problems. The solution to these problems displays a parabolic boundary layer if the perturbation parameter approaches zero. The retarded argument of the delay term made to coincide with a mesh point and the resulting singularly perturbed delay parabolic convection-diffusion problem is approximated using the implicit Euler method in temporal direction and extended cubic B-spline collocation in spatial orientation by introducing artificial viscosity both on uniform mesh. The proposed method is shown to be parameter uniform convergent, unconditionally stable, and linear order of accuracy. Furthermore, the obtained numerical results agreed with the theoretical results.
引用
收藏
页数:14
相关论文
共 41 条
[1]   A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations [J].
Abd-Elhameed W.M. ;
Youssri Y.H. ;
Doha E.H. .
Mathematical Sciences, 2015, 9 (2) :93-102
[2]   Two spectral Legendre's derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems [J].
Abdelhakem, M. ;
Youssri, Y. H. .
APPLIED NUMERICAL MATHEMATICS, 2021, 169 :243-255
[3]   A high order robust numerical scheme for singularly perturbed delay parabolic convection diffusion problems [J].
Babu, Gajendra ;
Bansal, Komal .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) :363-389
[4]   A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (02) :415-429
[5]   Interaction of maturation delay and nonlinear birth in population and epidemic models [J].
Cooke, K ;
van den Driessche, P ;
Zou, X .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 39 (04) :332-352
[6]   Collocation method using artificial viscosity for time dependent singularly perturbed differential-difference equations [J].
Daba, Imiru Takele ;
Duressa, Gemechis File .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 192 :201-220
[7]   Extended cubic B-spline collocation method for singularly perturbed parabolic differential-difference equation arising in computational neuroscience [J].
Daba, Imiru Takele ;
Duressa, Gemechis File .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2021, 37 (02)
[8]   The extended cubic B-spline algorithm for a modified regularized long wave equation [J].
Dag, I. ;
Irk, D. ;
Sari, M. .
CHINESE PHYSICS B, 2013, 22 (04)
[9]   Uniformly convergent hybrid numerical scheme for singularly perturbed delay parabolic convection-diffusion problems on Shishkin mesh [J].
Das, Abhishek ;
Natesan, Srinivasan .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 :168-186
[10]   A second order numerical method for singularly perturbed delay parabolic partial differential equation [J].
Govindarao, Lolugu ;
Mohapatra, Jugal .
ENGINEERING COMPUTATIONS, 2019, 36 (02) :420-444