Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review

被引:4
作者
Czyz, Christianna Marie [1 ,4 ]
Kunth, Paul Werner [1 ]
Gruber, Florian [2 ]
Kremslehner, Christopher [2 ]
Hammers, Christoph Matthias [1 ,3 ]
Hundt, Jennifer Elisabeth [1 ]
机构
[1] Univ Lubeck, Lubeck Inst Expt Dermatol LIED, Lubeck, Germany
[2] Med Univ Vienna, Christian Doppler Lab Skin Multimodal Analyt Imagi, Vienna, Austria
[3] Univ Kiel, Dept Dermatol Venereol & Allergol, Kiel, Germany
[4] Univ Lubeck, LIED, Ratzeburger Allee 160, D-23562 Lubeck, Germany
关键词
human skin equivalent; human skin organ culture model; keratinocytes; three-dimensional skin model; validation; LIQUID INTERFACE CULTURE; FOLLICLE STEM-CELLS; ORGAN-CULTURE; ANTIMICROBIAL PEPTIDES; LANGERHANS CELLS; KERATIN; MODEL; EXPRESSION; FILAGGRIN; SYSTEM;
D O I
10.1111/exd.14911
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
引用
收藏
页码:1870 / 1883
页数:14
相关论文
共 166 条
  • [1] Skin models for the testing of transdermal drugs
    Abd, Eman
    Yousef, Shereen A.
    Pastore, Michael N.
    Telaprolu, Krishna
    Mohammed, Yousuf H.
    Namjoshi, Sarika
    Grice, Jeffrey E.
    Roberts, Michael S.
    [J]. CLINICAL PHARMACOLOGY-ADVANCES AND APPLICATIONS, 2016, 8 : 163 - 176
  • [2] Alekseev A G, 2009, Morfologiia, V136, P81
  • [3] Morphological and biochemical characterization and analysis of apoptosis
    Allen, RT
    Hunter, WJ
    Agrawal, DK
    [J]. JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS, 1997, 37 (04) : 215 - 228
  • [4] [Anonymous], SCI IM ILL SOFTW BIO
  • [5] Basic histological structure and functions of facial skin
    Arda, Oktay
    Goksugur, Nadir
    Tuzun, Yalcin
    [J]. CLINICS IN DERMATOLOGY, 2014, 32 (01) : 3 - 13
  • [6] The Role of Filaggrin in the Skin Barrier and Disease Development
    Armengot-Carbo, M.
    Hernandez-Martin, A.
    Torrelo, A.
    [J]. ACTAS DERMO-SIFILIOGRAFICAS, 2015, 106 (02): : 86 - 95
  • [7] ARNEMANN J, 1993, J CELL SCI, V104, P741
  • [8] In Vitro Model of the Epidermis: Connecting Protein Function to 3D Structure
    Arnette, Christopher
    Koetsier, Jennifer L.
    Hoover, Paul
    Getsios, Spiro
    Green, Kathleen J.
    [J]. INTERMEDIATE FILAMENT ASSOCIATED PROTEINS, 2016, 569 : 287 - 308
  • [9] Keratinocyte cadherin desmoglein 1 controls melanocyte behavior through paracrine signaling
    Arnette, Christopher R.
    Roth-Carter, Quinn R.
    Koetsier, Jennifer L.
    Broussard, Joshua A.
    Burks, Hope E.
    Cheng, Kathleen
    Amadi, Christine
    Gerami, Pedram
    Johnson, Jodi L.
    Green, Kathleen J.
    [J]. PIGMENT CELL & MELANOMA RESEARCH, 2020, 33 (02) : 305 - 317
  • [10] Caspase-3: Structure, function, and biotechnological aspects
    Asadi, Marzieh
    Taghizadeh, Saeed
    Kaviani, Elina
    Vakili, Omid
    Taheri-Anganeh, Mortaza
    Tahamtan, Mahshid
    Savardashtaki, Amir
    [J]. BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2022, 69 (04) : 1633 - 1645