The Effect of Reduction and Oxidation Processes on the Work Function of Metal Oxide Crystals: TiO2(110) and SrTiO3(001) Case

被引:5
作者
Cieslik, Karol [1 ,2 ]
Wrana, Dominik [1 ]
Rogala, Maciej [3 ]
Rodenbuecher, Christian [4 ]
Szot, Krzysztof [5 ]
Krok, Franciszek [1 ]
机构
[1] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Lojasiewicza 11, PL-30348 Krakow, Poland
[2] Justus Liebig Univ Giessen, Inst Appl Phys, Heinrich Buff Ring 16, D-35392 Giessen, Germany
[3] Univ Lodz, Fac Phys & Appl Informat, Dept Solid State Phys, Pomorska 149-153, PL-90236 Lodz, Poland
[4] Forschungszentrum Julich, Inst Energy & Climate Res IEK 14, D-52425 Julich, Germany
[5] Univ Silesia, A Chelkowski Inst Phys, PL-41500 Chorzow, Poland
关键词
oxide; reduction; oxidation; work function; TiO2; SrTiO3; perovskites; surfaces; KPFM; STM; LEED; PROBE FORCE MICROSCOPY; STRONTIUM-TITANATE; IN-SITU; RUTILE TIO2(110); SURFACE; TIO2; O-2; ADSORPTION; XPS; CHEMISORPTION;
D O I
10.3390/cryst13071052
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The strict control of the work function of transition metal oxide crystals is of the utmost importance not only to fundamental research but also to applications based on these materials. Transition metal oxides are highly abundant in electronic devices, as their properties can be easily modified using redox processes. However, this ease of tuning is a double-edged sword. With the ease of manipulation comes difficulty in controlling the corresponding process. In this study, we demonstrate how redox processes can be induced in a laboratory setting and how they affect the work function of two model transition metal oxide crystals, namely titanium dioxide TiO2(110) and strontium titanate SrTiO3(001). To accomplish this task, we utilized Kelvin Probe Force Microscopy (KPFM) to monitor changes in work function, Scanning Tunneling Microscopy (STM), and Low-Energy Electron Diffraction (LEED) to check the surface morphology and reconstruction, and we also used X-ray Photoelectron Spectroscopy (XPS) to determine how the surface composition evolves. We also show that using redox processes, the work function of titanium dioxide can be modified in the range of 3.4-5.0 eV, and that of strontium titanate can be modified in the range of 2.9-4.5 eV. Moreover, we show that the presence of an oxygen-gaining material in the vicinity of a transition metal oxide during annealing can deepen the changes to its stoichiometry and therefore the work function.
引用
收藏
页数:17
相关论文
共 84 条
  • [21] The Work Function of TiO2
    Kashiwaya, Shun
    Morasch, Jan
    Streibel, Verena
    Toupance, Thierry
    Jaegermann, Wolfram
    Klein, Andreas
    [J]. SURFACES, 2018, 1 (01): : 73 - 89
  • [22] Atomic-resolution imaging of rutile TiO2(110)-(1 x 2) reconstructed surface by non-contact atomic force microscopy
    Katsube, Daiki
    Ojima, Shoki
    Inami, Eiichi
    Abe, Masayuki
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 443 - 449
  • [23] Vacant-Site Octahedral Tilings on SrTiO3 (001), the (√13 x √13)R33.7° Surface, and Related Structures
    Kienzle, D. M.
    Becerra-Toledo, A. E.
    Marks, L. D.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (17)
  • [24] Photoemission study on the adsorption of ethanol on clean and oxidized rutile TiO2 (110)-1 x 1 surfaces
    Kim, Yu Kwon
    Hwang, Chan-Cuk
    [J]. SURFACE SCIENCE, 2011, 605 (23-24) : 2082 - 2086
  • [25] Two-Dimensional Crystals as a Buffer Layer for High Work Function Applications: The Case of Monolayer MoO3
    Kowalczyk, Dorota A.
    Rogala, Maciej
    Szalowski, Karol
    Belic, Domagoj
    Dabrowski, Pawel
    Krukowski, Pawel
    Lutsyk, Iaroslav
    Piskorski, Michal
    Nadolska, Aleksandra
    Krempinski, Patryk
    Le Ster, Maxime
    Kowalczyk, Pawel J.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (39) : 44506 - 44515
  • [26] Dynamic force microscopy and Kelvin probe force microscopy of KBr film on InSb(001) surface at submonolayer coverage
    Krok, F
    Kolodziej, JJ
    Such, B
    Czuba, P
    Struski, P
    Piatkowski, P
    Szymonski, M
    [J]. SURFACE SCIENCE, 2004, 566 : 63 - 67
  • [27] Surface structure of SrTiO3(100)
    Kubo, T
    Nozoye, H
    [J]. SURFACE SCIENCE, 2003, 542 (03) : 177 - 191
  • [28] Oxygen-induced restructuring of the TiO2(110) surface:: a comprehensive study
    Li, M
    Hebenstreit, W
    Gross, L
    Diebold, U
    Henderson, MA
    Jennison, DR
    Schultz, PA
    Sears, MP
    [J]. SURFACE SCIENCE, 1999, 437 (1-2) : 173 - 190
  • [29] Review of memristor devices in neuromorphic computing: materials sciences and device challenges
    Li, Yibo
    Wang, Zhongrui
    Midya, Rivu
    Xia, Qiangfei
    Yang, J. Joshua
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (50)
  • [30] Dissociative and molecular oxygen chemisorption channels on reduced rutile TiO2(110): An STM and TPD study
    Lira, Estephania
    Hansen, Jonas O.
    Huo, Peipei
    Bechstein, Ralf
    Galliker, Patrick
    Laegsgaard, Erik
    Hammer, Bjork
    Wendt, Stefan
    Besenbacher, Flemming
    [J]. SURFACE SCIENCE, 2010, 604 (21-22) : 1945 - 1960