Functional connectivity discriminates epileptogenic states and predicts surgical outcome in children with drug resistant epilepsy

被引:21
作者
Rijal, Sakar [1 ,2 ]
Corona, Ludovica [1 ,2 ]
Perry, M. Scott [1 ]
Tamilia, Eleonora [3 ]
Madsen, Joseph R. [4 ]
Stone, Scellig S. D. [4 ]
Bolton, Jeffrey [5 ]
Pearl, Phillip L. [5 ]
Papadelis, Christos [1 ,2 ,6 ]
机构
[1] Cook Childrens Hlth Care Syst, Jane & John Justin Inst Mind Hlth Neurosci Ctr, 1500 Cooper St, Ft Worth, TX 76104 USA
[2] Univ Texas Arlington, Dept Bioengn, Arlington, TX 76010 USA
[3] Harvard Med Sch, Boston Childrens Hosp, Fetal Neonatal Neuroimaging & Dev Sci Ctr, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston Childrens Hosp, Dept Neurosurg, Div Epilepsy Surg, Boston, MA 02115 USA
[5] Harvard Med Sch, Boston Childrens Hosp, Dept Neurol, Div Epilepsy & Clin Neurophysiol, Boston, MA 02115 USA
[6] Texas Christian Univ, Sch Med, Ft Worth, TX 76129 USA
关键词
INTRACRANIAL EEG; BRAIN CONNECTIVITY; SEIZURE PREDICTION; NETWORKS; SYNCHRONY; SEEG; ZONE;
D O I
10.1038/s41598-023-36551-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Normal brain functioning emerges from a complex interplay among regions forming networks. In epilepsy, these networks are disrupted causing seizures. Highly connected nodes in these networks are epilepsy surgery targets. Here, we assess whether functional connectivity (FC) using intracranial electroencephalography can quantify brain regions epileptogenicity and predict surgical outcome in children with drug resistant epilepsy (DRE). We computed FC between electrodes on different states (i.e. interictal without spikes, interictal with spikes, pre-ictal, ictal, and post-ictal) and frequency bands. We then estimated the electrodes' nodal strength. We compared nodal strength between states, inside and outside resection for good- (n = 22, Engel I) and poor-outcome (n = 9, Engel II-IV) patients, respectively, and tested their utility to predict the epileptogenic zone and outcome. We observed a hierarchical epileptogenic organization among states for nodal strength: lower FC during interictal and pre-ictal states followed by higher FC during ictal and post-ictal states (p < 0.05). We further observed higher FC inside resection (p < 0.05) for good-outcome patients on different states and bands, and no differences for poor-outcome patients. Resection of nodes with high FC was predictive of outcome (positive and negative predictive values: 47-100%). Our findings suggest that FC can discriminate epileptogenic states and predict outcome in patients with DRE.
引用
收藏
页数:17
相关论文
共 75 条
  • [1] Abbaszadeh B, 2019, IEEE ENG MED BIO, P3442, DOI [10.1109/EMBC.2019.8856286, 10.1109/embc.2019.8856286]
  • [2] Ictal and interictal source imaging on intracranial EEG predicts epilepsy surgery outcome in children with focal cortical dysplasia
    Alhilani, Michel
    Tamilia, Eleonora
    Ricci, Lorenzo
    Ricci, Laura
    Grant, P. Ellen
    Madsen, Joseph R.
    Pearl, Phillip L.
    Papadelis, Christos
    [J]. CLINICAL NEUROPHYSIOLOGY, 2020, 131 (03) : 734 - 743
  • [3] Interictal spike networks predict surgical outcome in patients with drug-resistant focal epilepsy
    Azeem, Abdullah
    von Ellenrieder, Nicolas
    Hall, Jeffery
    Dubeau, Francois
    Frauscher, Birgit
    Gotman, Jean
    [J]. ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2021, 8 (06): : 1212 - 1223
  • [4] The "Connectivity Epileptogenicity Index" (cEI), a method for mapping the different seizure onset patterns in StereoElectroEncephalography recorded seizures
    Balatskaya, Alexandra
    Roehri, Nicolas
    Lagarde, Stanislas
    Pizzo, Francesca
    Medina, Samuel
    Wendling, Fabrice
    Benar, Christian-George
    Bartolomei, Fabrice
    [J]. CLINICAL NEUROPHYSIOLOGY, 2020, 131 (08) : 1947 - 1955
  • [5] Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy
    Bartolomei, F
    Wendling, F
    Régis, J
    Gavaret, M
    Guye, M
    Chauvel, P
    [J]. EPILEPSY RESEARCH, 2004, 61 (1-3) : 89 - 104
  • [6] Defining epileptogenic networks: Contribution of SEEG and signal analysis
    Bartolomei, Fabrice
    Lagarde, Stanislas
    Wendling, Fabrice
    McGonigal, Aileen
    Jirsa, Viktor
    Guye, Maxime
    Benar, Christian
    [J]. EPILEPSIA, 2017, 58 (07) : 1131 - 1147
  • [7] Dynamics of convulsive seizure termination and postictal generalized EEG suppression
    Bauer, Prisca R.
    Thijs, Roland D.
    Lamberts, Robert J.
    Velis, Demetrios N.
    Visser, Gerhard H.
    Tolner, Else A.
    Sander, Josemir W.
    Lopes da Silva, Fernando H.
    Kalitzin, Stiliyan N.
    [J]. BRAIN, 2017, 140 : 655 - 668
  • [8] Electrocorticography and stereo EEG provide distinct measures of brain connectivity: implications for network models
    Bernabei, John M.
    Arnold, T. Campbell
    Shah, Preya
    Revell, Andrew
    Ong, Ian Z.
    Kini, Lohith G.
    Stein, Joel M.
    Shinohara, Russell T.
    Lucas, Timothy H.
    Davis, Kathryn A.
    Bassett, Danielle S.
    Litt, Brian
    [J]. BRAIN COMMUNICATIONS, 2021, 3 (03)
  • [9] In vivo measurement of brain network connectivity reflects progression and intrinsic disease severity in a model of temporal lobe epilepsy
    Bertoglio, Daniele
    Jonckers, Elisabeth
    Ali, Idrish
    Verhoye, Marleen
    Van der Linden, Annemie
    Dedeurwaerdere, Stefanie
    [J]. NEUROBIOLOGY OF DISEASE, 2019, 127 : 45 - 52
  • [10] Plasticity of Hippocampal Excitatory-Inhibitory Balance: Missing the Synaptic Control in the Epileptic Brain
    Bonansco, Christian
    Fuenzalida, Marco
    [J]. NEURAL PLASTICITY, 2016, 2016