High-Performance Solid Lithium Metal Batteries Enabled by LiF/LiCl/LiIn Hybrid SEI via InCl3-Driven In Situ Polymerization of 1,3-Dioxolane

被引:33
作者
Yang, Tianqi [1 ]
Zhang, Wenkui [1 ]
Liu, Yaning [1 ]
Zheng, Jiale [1 ]
Xia, Yang [1 ]
Tao, Xinyong [1 ]
Wang, Yao [1 ]
Xia, Xinhui [1 ]
Huang, Hui [1 ]
Gan, Yongping [1 ]
He, Xinping [1 ]
Zhang, Jun [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
1; 3-dioxolane; hybrid solid electrolyte interfaces; in situ polymerization; Li-In alloy; solid lithium metal batteries; ELECTROLYTES; INTERPHASE;
D O I
10.1002/smll.202303210
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of poly(1,3-dioxolane) (PDOL) electrolyte for lithium batteries has gained attention due to its high ionic conductivity, low cost, and potential for large-scale applications. However, its compatibility with Li metal needs improvement to build a stable solid electrolyte interface (SEI) toward metallic Li anode for practical lithium batteries. To address this concern, this study utilized a simple InCl3-driven strategy for polymerizing DOL and building a stable LiF/LiCl/LiIn hybrid SEI, confirmed through X-ray photoelectron spectroscopy (XPS) and cryogenic-transmission electron microscopy (Cryo-TEM). Furthermore, density functional theory (DFT) calculations and finite element simulation (FES) verify that the hybrid SEI exhibits not only excellent electron insulating properties but also fast transport properties of Li+. Moreover, the interfacial electric field shows an even potential distribution and larger Li+ flux, resulting in uniform dendrite-free Li deposition. The use of the LiF/LiCl/LiIn hybrid SEI in Li/Li symmetric batteries shows steady cycling for 2000 h, without experiencing a short circuit. The hybrid SEI also provided excellent rate performance and outstanding cycling stability in LiFePO4/Li batteries, with a high specific capacity of 123.5 mAh g(-1) at 10 C rate. This study contributes to the design of high-performance solid lithium metal batteries utilizing PDOL electrolytes.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Interfaces in Solid Electrolyte Interphase: Implications for Lithium-Ion Batteries [J].
Ahmad, Zeeshan ;
Venturi, Victor ;
Hafiz, Hasnain ;
Viswanathan, Venkatasubramanian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (21) :11301-11309
[2]   12 μm-Thick Sintered Garnet Ceramic Skeleton Enabling High-Energy-Density Solid-State Lithium Metal Batteries [J].
Bao, Chengshuai ;
Zheng, Chujun ;
Wu, Meifen ;
Zhang, Yan ;
Jin, Jun ;
Chen, Huan ;
Wen, Zhaoyin .
ADVANCED ENERGY MATERIALS, 2023, 13 (13)
[3]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+
[4]   In situ formation of a lithiophilic surface on 3D current collectors to regulate lithium nucleation and growth for dendrite-free lithium metal anodes [J].
Fan, Yanchao ;
Liao, Jianping ;
Luo, Dexin ;
Huang, Yutong ;
Sun, Feng ;
Nan, Junmin .
CHEMICAL ENGINEERING JOURNAL, 2023, 453
[5]   Ultra-Stretchable, Ionic Conducting, Pressure-Sensitive Adhesive with Dual Role for Stable Li-Metal Batteries [J].
Gao, Shilun ;
Pan, Yiyang ;
Li, Bingrui ;
Rahman, Md Anisur ;
Tian, Ming ;
Yang, Huabin ;
Cao, Peng-Fei .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (07)
[6]   Electronegativity-Induced Single-Ion Conducting Polymer Electrolyte for Solid-State Lithium Batteries [J].
Hou, Tianyi ;
Qian, Yumin ;
Li, Dinggen ;
Xu, Bo ;
Huang, Zhenyu ;
Liu, Xueting ;
Wang, Haonan ;
Jiang, Bowen ;
Xu, Henghui ;
Huang, Yunhui .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (04)
[7]   An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode [J].
Hu, Anjun ;
Chen, Wei ;
Du, Xinchuan ;
Hu, Yin ;
Lei, Tianyu ;
Wang, Hongbo ;
Xue, Lanxin ;
Li, Yaoyao ;
Sun, He ;
Yan, Yichao ;
Long, Jianping ;
Shu, Chaozhu ;
Zhu, Jun ;
Li, Baihai ;
Wang, Xianfu ;
Xiong, Jie .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (07) :4115-4124
[8]  
Huang J., 2023, ADV FUNCT MATER, V33
[9]   Rational Design of Hierarchical "Ceramic-in-Polymer" and "Polymer-in-Ceramic" Electrolytes for Dendrite-Free Solid-State Batteries [J].
Huo, Hanyu ;
Chen, Yue ;
Luo, Jing ;
Yang, Xiaofei ;
Guo, Xiangxin ;
Sun, Xueliang .
ADVANCED ENERGY MATERIALS, 2019, 9 (17)
[10]   Biomacromolecules enabled dendrite-free lithium metal battery and its origin revealed by cryo-electron microscopy [J].
Ju, Zhijin ;
Nai, Jianwei ;
Wang, Yao ;
Liu, Tiefeng ;
Zheng, Jianhui ;
Yuan, Huadong ;
Sheng, Ouwei ;
Jin, Chengbin ;
Zhang, Wenkui ;
Jin, Zhong ;
Tian, He ;
Liu, Yujing ;
Tao, Xinyong .
NATURE COMMUNICATIONS, 2020, 11 (01)