Effect of fast noise on the fidelity of trapped-ion quantum gates

被引:8
作者
Nakav, Haim [1 ]
Finkelstein, Ran
Peleg, Lee
Akerman, Nitzan
Ozeri, Roee
机构
[1] Weizmann Inst Sci, Phys Complex Syst, IL-7610001 Rehovot, Israel
关键词
DECOHERENCE; COMPUTATION;
D O I
10.1103/PhysRevA.107.042622
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-fidelity single- and multiqubit operations compose the backbone of quantum information processing. This fidelity is based on the ability to couple single- or two-qubit levels in an extremely coherent and precise manner. A necessary condition for coherent quantum evolution is a highly stable local oscillator driving these transitions. Here we study the effect of fast noise, that is, noise at frequencies much higher than the local oscillator linewidth, on the fidelity of one- and two-qubit gates in a trapped-ion system. We analyze and measure the effect of fast noise on single-qubit operations, including resonant pi rotations and off-resonant sideband transitions. We further numerically analyze the effect of fast phase noise on the Molmer-Sorensen two-qubit gate. We find a unified and simple way to estimate the performance of all of these operations through a single parameter given by the noise power spectral density at the qubit response frequency. While our analysis focuses on phase noise and on trapped-ion systems, it is relevant for other sources of fast noise as well as for other qubit systems in which spinlike qubits are coupled by a common bosonic field. Our analysis can help in guiding the design of quantum hardware platforms and gates, improving their fidelity towards fault-tolerant quantum computing.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [2] Micromotion-enhanced fast entangling gates for trapped-ion quantum computing
    Ratcliffe, Alexander K.
    Oberg, Lachlan M.
    Hope, Joseph J.
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [3] Robust trapped-ion quantum logic gates by continuous dynamical decoupling
    Bermudez, A.
    Schmidt, P. O.
    Plenio, M. B.
    Retzker, A.
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [4] Trapped-ion antennae for the transmission of quantum information
    Harlander, M.
    Lechner, R.
    Brownnutt, M.
    Blatt, R.
    Haensel, W.
    NATURE, 2011, 471 (7337) : 200 - 203
  • [5] A small trapped-ion quantum register
    Kielpinski, D
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (03) : R121 - R135
  • [6] Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator
    Hempel, Cornelius
    Maier, Christine
    Romero, Jonathan
    McClean, Jarrod
    Monz, Thomas
    Shen, Heng
    Jurcevic, Petar
    Lanyon, Ben P.
    Love, Peter
    Babbush, Ryan
    Aspuru-Guzik, Alan
    Blatt, Rainer
    Roos, Christian F.
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [7] Probabilistic eigensolver with a trapped-ion quantum processor
    Zhang, Jing-Ning
    Arrazola, Inigo
    Casanova, Jorge
    Lamata, Lucas
    Kim, Kihwan
    Solano, Enrique
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [8] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [9] Demonstration of Shor Encoding on a Trapped-Ion Quantum Computer
    Nguyen, Nhung H.
    Li, Muyuan
    Green, Alaina M.
    Alderete, C. Huerta
    Zhu, Yingyue
    Zhu, Daiwei
    Brown, Kenneth R.
    Linke, Norbert M.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [10] A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing
    Wu, Y. -K.
    Duan, L. -M.
    CHINESE PHYSICS LETTERS, 2020, 37 (07)