Time Series Classification Based on Adaptive Feature Adjustment and Multi-scale AGRes2Net

被引:2
|
作者
Wu, Di [1 ]
Peng, Fei [1 ]
Cai, Chaozhi [2 ]
Du, Xinbao [1 ]
机构
[1] Hebei Univ Engn, Sch Informat & Elect Engn, 19 Taiji Rd, Handan 056000, Hebei, Peoples R China
[2] Hebei Univ Engn, Sch Mech & Equipment Engn, 19 Taiji Rd, Handan 056000, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Time series classification; IAM; Multi-scale feature extraction; AGRes2Net network; CONVOLUTIONAL NEURAL-NETWORK;
D O I
10.1007/s11063-023-11319-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series classification is an essential area of research in time series. To target the problem of unsatisfactory multi-scale feature extraction capability and the loss of features in deep learning for time series classification, an inter-module adaptive feature adjustment mechanism (IAM) multi-scale AGRes2Net full convolutional network model (IMAGRes2Net-FCN) is proposed. The time series is processed to add dimensional information to the dataset. A network model of FCN-AGRes2Net with fused IAM is constructed. Feature extraction is performed using FCN. Then, correlations between different AGRes2Net residual blocks are learned by the IAM, and the global features are acquired. The local features obtained by AGRes2Net multi-scale feature extraction are stitched with the global features obtained by IAM. Finally, the features are fed into the classification layer, and the classification results are obtained. The experimental results show that the accuracy of the proposed model is improved, and the PCE is reduced. Compared to the MRes-FCN, AGRes2Net, LSTM-FCN and MACNN on 14 datasets, including Coffee, ItalyPowerDemand, with others, accuracy is improved by 1.13-11.30% on average, the PCE is decreased by 0.14-5.04% on average.
引用
收藏
页码:8441 / 8463
页数:23
相关论文
共 50 条
  • [31] Scale-teaching: Robust Multi-scale Training for Time Series Classification with Noisy Labels
    Liu, Zhen
    Ma, Peitian
    Chen, Dongliang
    Pei, Wenbin
    Ma, Qianli
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Ship Detection in SAR Images Based on Multi-Scale Feature Extraction and Adaptive Feature Fusion
    Zhou, Kexue
    Zhang, Min
    Wang, Hai
    Tan, Jinlin
    REMOTE SENSING, 2022, 14 (03)
  • [33] Multi-scale signed recurrence plot based time series classification using inception architectural networks
    Zhang, Ye
    Hou, Yi
    OuYang, Kewei
    Zhou, Shilin
    PATTERN RECOGNITION, 2022, 123
  • [34] Abnormal pattern recognition for online inspection in manufacturing process based on multi-scale time series classification
    Bao, Xiangyu
    Zheng, Yu
    Chen, Liang
    Wu, Dianliang
    Chen, Xiaobo
    Liu, Ying
    JOURNAL OF MANUFACTURING SYSTEMS, 2024, 76 : 457 - 477
  • [35] Research on Waste Plastics Classification Method Based on Multi-Scale Feature Fusion
    Cai, Zhenxing
    Yang, Jianhong
    Fang, Huaiying
    Ji, Tianchen
    Hu, Yangyang
    Wang, Xin
    SENSORS, 2022, 22 (20)
  • [36] Hyperspectral image classification based on octave convolution and multi-scale feature fusion
    Li, Zhiyong
    Wen, Bo
    Luo, Yunzhong
    Li, Qiaochu
    Song, Lulu
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2022, 75 : 80 - 94
  • [37] Multi-scale Remote Sensing Image Classification Based on Weighted Feature Fusion
    Cheng Yinzhu
    Liu Song
    Wang Nan
    Shi Yuetian
    Zhang Geng
    ACTA PHOTONICA SINICA, 2023, 52 (11)
  • [38] Improved Remote Sensing Image Classification Based on Multi-Scale Feature Fusion
    Zhang, Chengming
    Chen, Yan
    Yang, Xiaoxia
    Gao, Shuai
    Li, Feng
    Kong, Ailing
    Zu, Dawei
    Sun, Li
    REMOTE SENSING, 2020, 12 (02)
  • [39] Vehicle detection method based on adaptive multi-scale feature fusion network
    Shen, Xuanjing
    Li, Hanyu
    Huang, Yongping
    Wang, Yu
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [40] Fine-Grained Image Classification Based on Multi-Scale Feature Fusion
    Li Siyao
    Liu Yuhong
    Zhang Rongfen
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (12)