Stability of inverse source problem for a transmission wave equation with multiple interfaces of discontinuity*

被引:2
作者
Jiang, Zifan [1 ,2 ]
Zhang, Wensheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Carleman estimate; inverse source problem; transmission wave equation; discontinuous coefficient; multiple interfaces; ACOUSTIC EQUATION; COEFFICIENT; UNIQUENESS;
D O I
10.1051/cocv/2023031
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a transmission wave equation in N embedded domains with multiple interfaces of discontinuous coefficients in Double-struck capital R-2. We study the global stability in determining the source term from a one-measurement data of wavefield velocity in a subboundary over a time interval. We prove the stability estimate for this inverse source problem by a combination of the local hyperbolic/elliptic Carleman estimates and the Fourier-Bros-Iagolniter transformation. Our method could be generalized to general dimensions since the weight functions and Carleman estimates are independent of the dimensions.
引用
收藏
页码:885 / 891
页数:31
相关论文
共 30 条
  • [1] A timelike Cauchy problem and an inverse problem for general hyperbolic equations
    Amirov, Arif
    Yamamoto, Masahiro
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (09) : 885 - 891
  • [2] [Anonymous], 1958, SOME QUESTIONS THEOR
  • [3] Aref'ev V.N., 1991, MATH NOTES ACAD SCI, P557
  • [4] A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
    Baudouin, Lucie
    Mercado, Alberto
    Osses, Axel
    [J]. INVERSE PROBLEMS, 2007, 23 (01) : 257 - 278
  • [5] Global Carleman Estimates for Waves and Applications
    Baudouin, Lucie
    de Buhan, Maya
    Ervedoza, Sylvain
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (05) : 823 - 859
  • [6] Inverse problem of determining the density and two Lame coefficients by boundary data
    Bellassoued, M.
    Imanuvilov, O.
    Yamamoto, M.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (01) : 238 - 265
  • [7] Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation
    Bellassoued, M
    Yamamoto, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (02): : 193 - 224
  • [8] Lipschitz stability in an inverse problem for a hyperbolic equation with a finite set of boundary data
    Bellassoued, M.
    Jellali, D.
    Yamamoto, M.
    [J]. APPLICABLE ANALYSIS, 2008, 87 (10-11) : 1105 - 1119
  • [9] Bellassoued M., 2004, APPL ANAL, V83, P983
  • [10] Bellassoued M., 2017, Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems