An efficient spectral method for solving third-kind Volterra integral equations with non-smooth solutions

被引:2
作者
Talaei, Y. [1 ]
Lima, P. M. [2 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Math & Applicat, Ardebil, Iran
[2] Univ Lisbon, Ctr Matemat Computac & Estocast, Inst Super Teecn, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Fractional recursive Tau method; Third-kind Volterra integral equation; Fractional canonical polynomials; Convergence analysis; Non-smooth solutions; WEAKLY-SINGULAR VOLTERRA; POLYNOMIALS;
D O I
10.1007/s40314-023-02333-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the numerical solution of Volterra integral equations of the third kind with non-smooth solutions based on the recursive approach of the spectral Tau method. To this end, a new set of the fractional version of canonical basis polynomials (called FC-polynomials) is introduced. The approximate polynomial solution (called Tau-solution) is expressed in terms of FC-polynomials. The fractional structure of Tau-solution allows recovering the standard degree of accuracy of spectral methods even in the case of non-smooth solutions. The convergence analysis of the method is carried out. The obtained numerical results show the accuracy and efficiency of the method compared to other existing methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Collocation methods for third-kind VIEs
    Allaei, Sonia Seyed
    Yang, Zhan-Wen
    Brunner, Hermann
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1104 - 1124
  • [2] EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS TO A CLASS OF THIRD-KIND VOLTERRA INTEGRAL EQUATIONS
    Allaei, Sonia Seyed
    Yang, Zhan-Wen
    Brunner, Hermann
    [J]. JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2015, 27 (03) : 325 - 342
  • [3] Ardabili J.S., 2018, Int. J. Appl. Comput. Math., V4, P25, DOI [10.1007/s40819-017-0433-2, DOI 10.1007/S40819-017-0433-2]
  • [4] A new Tau-collocation method with fractional basis for solving weakly singular delay Volterra integro-differential equations
    Azizipour, G.
    Shahmorad, S.
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (04) : 2435 - 2469
  • [5] Bartoshevich M.A., 1975, In.-Fiz., V28, P340
  • [6] STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND
    BELLEN, A
    JACKIEWICZ, Z
    VERMIGLIO, R
    ZENNARO, M
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) : 103 - 118
  • [7] Brunner H., 2017, Cambridge Monographs on Applied and Computational Mathematics, V30, DOI DOI 10.1017/9781316162491
  • [8] Legendre-Galerkin Methods for Third Kind VIEs and CVIEs
    Cai, Haotao
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (01)
  • [9] Canuto C., 2007, SCIENTIF COMPUT, DOI [10.1007/978-3-540-30728-0, 10.1007/978-3-540-30726-6]
  • [10] Collocation Methods for Volterra Integral and Integro-Differential Equations: A Review
    Cardone, Angelamaria
    Conte, Dajana
    D'Ambrosio, Raffaele
    Paternoster, Beatrice
    [J]. AXIOMS, 2018, 7 (03)