The Role of Thermalization in the Cooling Dynamics of Hot Carrier Solar Cells

被引:4
作者
Faber, Tim [1 ]
Filipovic, Lado [2 ]
Koster, L. Jan Anton [1 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] TU Wien, Inst Microelect, CDL Multiscale Proc Modeling Semicond Devices & Se, Gusshausstr 27-29, A-1040 Vienna, Austria
关键词
hot carrier cooling; hot carrier solar cells; Monte Carlo simulations; perovskites; third gen PV; MONTE-CARLO METHOD; PHOTOEXCITED CARRIERS; IODIDE PEROVSKITES; ENERGY; METHYLAMMONIUM; SEMICONDUCTORS; EFFICIENCY; MOBILITY; JUNCTION; PHONON;
D O I
10.1002/solr.202300140
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The hot carrier solar cell (HCSC) concept has been proposed to overcome the Shockley Queisser limit of a single p-n junction solar cell by harvesting carriers before they have lost their surplus energy. A promising family of materials for these purposes is metal halide perovskites (MHP). MHPs have experimentally shown very long cooling times, the key requirement of a HCSC. By using ensemble Monte Carlo simulations, light is shed on why cooling times are found to be extended. This article concentrates on the role of thermalization in the cooling process. The role of carrier-phonon and carrier-carrier interactions in thermalization and cooling is specified, while showing how these processes depend on material parameters, such as the dielectric constant and effective mass. It is quantified how thermalization acts as a cooling mechanism via the cold background effect. The importance of a low degree of background doping is to achieve the observed extended cooling times. Herein, it is mapped out how perovskites should be tuned, their material parameters, carrier concentration, and purity, in order to realize a HCSC. It contributes to the debate on the cooling times in MHPs and the suitability of tin perovskites for HCSCs.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Spectral sensitivity of hot carrier solar cells [J].
Hirst, L. C. ;
Lumb, M. P. ;
Hoheisel, R. ;
Bailey, C. G. ;
Philipps, S. P. ;
Bett, A. W. ;
Walters, R. J. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 120 :610-615
[22]   Hafnium nitride for hot carrier solar cells [J].
Chung, Simon ;
Shrestha, Santosh ;
Wen, Xiaoming ;
Feng, Yu ;
Gupta, Neeti ;
Xia, Hongze ;
Yu, Pyng ;
Tang, Jau ;
Conibeer, Gavin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 :781-786
[23]   Probing Charge Transfer and Hot Carrier Dynamics in Organic Solar Cells with Terahertz Spectroscopy [J].
Cunningham, Paul D. ;
Lane, Paul A. ;
Melinger, Joseph S. ;
Esenturk, Okan ;
Heilweil, Edwin J. .
TERAHERTZ PHYSICS, DEVICES, AND SYSTEMS X: ADVANCED APPLICATIONS IN INDUSTRY AND DEFENSE, 2016, 9856
[24]   Cation Effect on Hot Carrier Cooling in Halide Perovskite Materials [J].
Madlet, Mohamed E. ;
Berdiyorov, Golibjon R. ;
El-Mellouhi, Fedwa ;
Alharbi, Fahhad H. ;
Akimov, Alexey V. ;
Kais, Sabre .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (18) :4439-4445
[25]   Hot-carrier multijunction solar cells: sensitivity and resilience to nonidealities [J].
Giteau, Maxime ;
Almosni, Samy ;
Guillemoles, Jean-Francois ;
Suchet, Daniel .
JOURNAL OF PHOTONICS FOR ENERGY, 2022, 12 (03)
[26]   Challenges, myths, and opportunities in hot carrier solar cells [J].
Ferry, D. K. ;
Goodnick, S. M. ;
Whiteside, V. R. ;
Sellers, I. R. .
JOURNAL OF APPLIED PHYSICS, 2020, 128 (22)
[27]   Enhancement of hot carrier effect and signatures of confinement in terms of thermalization power in quantum well solar cell [J].
Makhfudz, I ;
Cavassilas, N. ;
Giteau, M. ;
Esmaielpour, H. ;
Suchet, D. ;
Dare, A-M ;
Michelini, F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (47)
[28]   Optoelectronic reciprocity in hot carrier solar cells with ideal energy selective contacts [J].
Pusch, Andreas ;
Dubajic, Milos ;
Nielsen, Michael P. ;
Conibeer, Gavin J. ;
Bremner, Stephen P. ;
Ekins-Daukes, Nicholas J. .
PROGRESS IN PHOTOVOLTAICS, 2021, 29 (04) :433-444
[29]   Hot-carrier multi-junction solar cells: A synergistic approach [J].
Giteau, Maxime ;
Almosni, Samy ;
Guillemoles, Jean-Francois .
APPLIED PHYSICS LETTERS, 2022, 120 (21)
[30]   Electron-phonon energy transfer in hot-carrier solar cells [J].
Luque, Antonio ;
Marti, Antonio .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (02) :287-296