Localized nodal solutions for system of critical Choquard equations

被引:1
作者
Liu, Xiangqing [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 121卷
关键词
Nonlinear Choquard equation; The critical growth; Nodal solution; The truncation method; flow; The method of invariant sets of descending; SEMICLASSICAL STATES; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.cnsns.2023.107190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the system of critical Choquard equations iota epsilon 2 increment vj - a(x)vj + n-ary sumation k i=1 beta ij epsilon-alpha(f ) RN |vi(y)|2*alpha dy |vj|2*alpha-2vj + lambda j|vj|q-2vj = 0, x is an element of RN, |x-y|N-alpha vj(x) -> 0 as |x| -> infinity, j= 1, . . . , k, where N >= 3, lambda j > 0, j = 1, ... , k, (N - 4)+ < alpha < N, 2*alpha = N+alpha N-2 , max{2, 2* - 1} < q < 2* = 2N N-2, epsilon > 0 is a small parameter and the potential function a is bounded and positive. By the truncation method and the method of invariant sets of descending flow, we establish for small epsilon the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function a.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:27
相关论文
共 20 条
[11]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[12]  
Lions P. L., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P1063, DOI 10.1016/0362-546X(80)90016-4
[13]   Multiple mixed states of nodal solutions for nonlinear Schrodinger systems [J].
Liu, Jiaquan ;
Liu, Xiangqing ;
Wang, Zhi-qiang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (3-4) :565-586
[14]   Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation [J].
Ma, Li ;
Zhao, Lin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) :455-467
[15]   Semi-classical states for the Choquard equation [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) :199-235
[16]   Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (02) :153-184
[17]  
Pekar S., 1954, Untersuchung ber Die Elektronentheorie der Kristalle
[18]   Existence and nonexistence of nodal solutions for Choquard type equations with perturbation [J].
Wang, Tao ;
Guo, Hui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 480 (02)
[19]   Saddle solutions for the Choquard equation II [J].
Wang, Zhi-Qiang ;
Xia, Jiankang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 201
[20]   Strongly interacting bumps for the Schrodinger-Newton equations [J].
Wei, Juncheng ;
Winter, Matthias .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)