Localized nodal solutions for system of critical Choquard equations

被引:1
作者
Liu, Xiangqing [1 ]
机构
[1] Yunnan Normal Univ, Dept Math, Kunming 650500, Yunnan, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2023年 / 121卷
关键词
Nonlinear Choquard equation; The critical growth; Nodal solution; The truncation method; flow; The method of invariant sets of descending; SEMICLASSICAL STATES; EXISTENCE; UNIQUENESS;
D O I
10.1016/j.cnsns.2023.107190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the system of critical Choquard equations iota epsilon 2 increment vj - a(x)vj + n-ary sumation k i=1 beta ij epsilon-alpha(f ) RN |vi(y)|2*alpha dy |vj|2*alpha-2vj + lambda j|vj|q-2vj = 0, x is an element of RN, |x-y|N-alpha vj(x) -> 0 as |x| -> infinity, j= 1, . . . , k, where N >= 3, lambda j > 0, j = 1, ... , k, (N - 4)+ < alpha < N, 2*alpha = N+alpha N-2 , max{2, 2* - 1} < q < 2* = 2N N-2, epsilon > 0 is a small parameter and the potential function a is bounded and positive. By the truncation method and the method of invariant sets of descending flow, we establish for small epsilon the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function a.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:27
相关论文
共 20 条
[1]  
[Anonymous], 2007, Concentration compactness
[2]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316
[3]   Semi-classical states for the nonlinear Choquard equations: existence, multiplicity and concentration at a potential well [J].
Cingolani, Silvia ;
Tanaka, Kazunaga .
REVISTA MATEMATICA IBEROAMERICANA, 2019, 35 (06) :1885-1924
[4]   Multiple solutions to a magnetic nonlinear Choquard equation [J].
Cingolani, Silvia ;
Clapp, Monica ;
Secchi, Simone .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02) :233-248
[5]   Positive and sign changing solutions to a nonlinear Choquard equation [J].
Clapp, Monica ;
Salazar, Dora .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :1-15
[6]   Nodal solutions for the Choquard equation [J].
Ghimenti, Marco ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :107-135
[7]   Localized nodal solutions for semiclassical Choquard equations [J].
He, Rui ;
Liu, Xiangqing .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (09)
[8]   UNIQUENESS OF GROUND STATES FOR PSEUDORELATIVISTIC HARTREE EQUATIONS [J].
Lenzmann, Enno .
ANALYSIS & PDE, 2009, 2 (01) :1-27
[9]   Choquard equations with critical nonlinearities [J].
Li, Xinfu ;
Ma, Shiwang .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
[10]  
Lieb E. H., 2001, Graduate Studies in Mathematics, VVol. 14