Volatility forecasting using deep recurrent neural networks as GARCH models

被引:13
作者
Di-Giorgi, Gustavo [1 ]
Salas, Rodrigo [2 ,3 ]
Avaria, Rodrigo [1 ]
Ubal, Cristian [1 ]
Rosas, Harvey [1 ]
Torres, Romina [4 ]
机构
[1] Univ Valparaiso, Inst Stat, Fac Sci, Valparaiso, Chile
[2] Univ Valparaiso, Fac Engn, Sch Biomed Engn, Valparaiso, Chile
[3] Millennium Inst Intelligent Healthcare Engn iHlth, Santiago, Chile
[4] Univ Andres Bello, Fac Engn, Santiago, Chile
关键词
Stochastic volatility; Stock options return; LSTM; BiLSTM; GRU; Deep learning; FAMILY;
D O I
10.1007/s00180-023-01349-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimating and predicting volatility in time series is of great importance in different areas where it is required to quantify risk based on variability and uncertainty. This work proposes a new methodology to predict Time Series volatility by combining Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) methods with Deep Neural Networks. Additionally, the proposal incorporates a mechanism to determine the optimal size of the sliding window used to estimate volatility. In this work, the recurrent neural networks Gated Recurrent Units, Long/Short-Term Memory (LSTM), and Bidirectional Long/Short-Term Memory (BiLSTM) are evaluated with the methods of the family Garch (fGARCH). We conducted Monte Carlo simulation studies with heteroscedastic time series to validate our proposed methodology. Moreover, we have applied the proposed method to real financial data from the stock market, such as the Selective Stock Price Index Chile index, Standard & Poor's 500 Index (S &P500), and the prices of the Stock Exchange from Australia (ASX200). The proposed methodology performs well in predicting the stock options returns volatility one week ahead.
引用
收藏
页码:3229 / 3255
页数:27
相关论文
共 35 条
[1]  
Allende H, 2004, LECT NOTES COMPUT SC, V2972, P813
[2]  
Allende H, 2002, KYBERNETIKA, V38, P685
[3]   Combining high frequency data with non-linear models for forecasting energy market volatility [J].
Barunik, Jozef ;
Krehlik, Tomas .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 55 :222-242
[4]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[5]  
Bollerslev T., 1986, ECONOMET REV, V5, P1, DOI DOI 10.1080/07474938608800095
[6]  
Chen K, 2015, PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, P2823, DOI 10.1109/BigData.2015.7364089
[7]  
Cho K., 2014, ARXIV, P103
[8]   Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru [J].
Cordova, Chardin Hoyos ;
Portocarrero, Manuel Nino Lopez ;
Salas, Rodrigo ;
Torres, Romina ;
Rodrigues, Paulo Canas ;
Lopez-Gonzales, Javier Linkolk .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   A Spatio-Temporal Visualization Approach of PM10 Concentration Data in Metropolitan Lima [J].
Encalada-Malca, Alexandra Abigail ;
Cochachi-Bustamante, Javier David ;
Rodrigues, Paulo Canas ;
Salas, Rodrigo ;
Lopez-Gonzales, Javier Linkolk .
ATMOSPHERE, 2021, 12 (05)
[10]   AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION [J].
ENGLE, RF .
ECONOMETRICA, 1982, 50 (04) :987-1007