Simulation of Sorption-Enhanced Steam Methane Reforming over Ni-Based Catalyst in a Pressurized Dual Fluidized Bed Reactor

被引:4
|
作者
Yan, Linbo [1 ]
Li, Kexin [1 ]
Sui, Hongyang [1 ]
He, Boshu [1 ]
Geng, Cong [1 ]
Fang, Baizeng [2 ]
机构
[1] Beijing Jiaotong Univ, Inst Combust & Thermal Syst, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[2] Univ Sci & Technol Beijing, Dept Energy Storage Sci & Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
methane steam reforming; Ni-based catalyst; sorption enhancement; dual fluidized bed; Eulerian-Eulerian model; HYDROGEN; GASIFICATION; PYROLYSIS; KINETICS; GASOLINE; WASTES; MODEL; FUELS;
D O I
10.3390/inorganics11030107
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Steam methane reforming is a major method of hydrogen production. However, this method usually suffers from low energy efficiency and high carbon-emission intensity. To solve this issue, a novel steam-methane-reforming process over a Ni-based catalyst in a pressurized dual fluidized bed reactor is proposed in this work. A three-dimensional computational fluid dynamics (CFD) model for the complex physicochemical process was built to study the reforming characteristics. The model was first validated against the reported data in terms of hydrodynamics and reaction kinetics. Next, the performance of the proposed methane-steam-reforming process was predicted. It was found that the methane-conversion ratio was close to 100%. The mole fraction of H-2 in the dry-yield syngas reached 98.8%, the cold gas efficiency reached 98.5%, and the carbon-capture rate reached 96.4%. It is believed that the proposed method can be used for methane reforming with high efficiency and low carbon intensity.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Sorption-Enhanced methane steam reforming in a circulating fluidized bed reactor system
    Arstad, Bjornar
    Blom, Richard
    Bakken, Egil
    Dahl, Ival
    Jakobsen, Jana P.
    Rokke, Petter
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 715 - 720
  • [2] Modeling of sorption-enhanced steam reforming in a dual fluidized bubbling bed reactor
    Johnsen, Kim
    Grace, John R.
    Elnashaie, Said S. E. H.
    Kolbeinsen, Leiv
    Eriksen, Dag
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (12) : 4133 - 4144
  • [3] Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor
    Johnsen, K
    Ryu, HJ
    Grace, JR
    Lim, CJ
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (04) : 1195 - 1202
  • [4] MODELLING OF BINARY FLUIDIZED BED REACTORS FOR THE SORPTION-ENHANCED STEAM METHANE REFORMING PROCESSD
    Chao, Zhongxi
    Zhang, Yuanwei
    Wang, Yuefa
    Jakobsen, Jana P.
    Jakobsen, Hugo A.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2017, 95 (01): : 157 - 169
  • [5] High-temperature attrition of sorbents and a catalyst for sorption-enhanced steam methane reforming in a fluidized bed environment
    Johnsen, K.
    Grace, J. R.
    POWDER TECHNOLOGY, 2007, 173 (03) : 200 - 202
  • [6] Numerical investigation of the sorption enhanced steam methane reforming in a fluidized bed reactor
    Chao, Zhongxi
    Wang, Yuefa
    Jakobsen, Jana P.
    Fernandino, Maria
    Jakobsen, Hugo A.
    2ND TRONDHEIM GAS TECHNOLOGY CONFERENCE, 2012, 26 : 15 - 21
  • [7] Ni-based bimetallic catalysts for hydrogen production via (sorption-enhanced) steam methane reforming
    Wang, Siqi
    Shen, Ziqi
    Osatiashtiani, Amin
    Nabavi, Seyed Ali
    Clough, Peter T.
    CHEMICAL ENGINEERING JOURNAL, 2024, 486
  • [8] Sorption-enhanced steam reforming of glycerol on Ni-based multifunctional catalysts
    Wang, Chao
    Dou, Binlin
    Jiang, Bo
    Song, Yongchen
    Du, Baoguo
    Zhang, Chuan
    Wang, Kaiqiang
    Chen, Haisheng
    Xu, Yujie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (22) : 7037 - 7044
  • [9] Numerical study of sorption-enhanced methane steam reforming over Ni/Al2O3 catalyst in a fixed-bed reactor
    Neni, Amira
    Benguerba, Yacine
    Balsamo, Marco
    Erto, Alessandro
    Ernst, Barbara
    Benachour, Djafer
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 165
  • [10] Tandem bed configuration for sorption-enhanced steam reforming of methane
    Reijers, H. Th J.
    Elzinga, G. D.
    Cobden, P. D.
    Haije, W. G.
    van den Brink, R. W.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (03) : 531 - 537