Machine learning for detection and classification of oral potentially malignant disorders: A conceptual review

被引:17
作者
de Souza, Lucas Lacerda [1 ]
Fonseca, Felipe Paiva [1 ,2 ]
Araujo, Anna Luiza Damaceno [1 ]
Lopes, Marcio Ajudarte [1 ]
Vargas, Pablo Agustin [1 ]
Khurram, Syed Ali [3 ]
Kowalski, Luiz Paulo [4 ,5 ]
dos Santos, Harim Tavares [6 ,7 ]
Warnakulasuriya, Saman [8 ,9 ]
Dolezal, James [10 ]
Pearson, Alexander. T. [10 ]
Santos-Silva, Alan Roger [1 ]
机构
[1] Univ Campinas UNICAMP, Piracicaba Dent Sch, Oral Diag, Sao Paulo, Brazil
[2] Univ Fed Minas Gerais, Sch Dent, Dept Oral Surg & Pathol, Belo Horizonte, Brazil
[3] Univ Sheffield, Sch Clin Dent, Unit Oral & Maxillofacial Pathol, Sheffield, England
[4] Univ Sao Paulo Med Sch, Dept Head & Neck Surg, Sao Paulo, Brazil
[5] AC Camargo Canc Ctr, Dept Head & Neck Surg & Otorhinolaryngol, Sao Paulo, Brazil
[6] Univ Missouri, Dept Otolaryngol Head & Neck Surg, Columbia, MO USA
[7] Univ Missouri, Dept Bond Life Sci Ctr, Columbia, MO USA
[8] Kings Coll London, London, England
[9] WHO Collaborating Ctr Oral Canc, London, England
[10] Univ Chicago, Dept Med, Sect Hematol Oncol, Chicago, IL USA
基金
巴西圣保罗研究基金会;
关键词
diagnosis; machine learning; oral potentially malignant disorder; technology; ARTIFICIAL-INTELLIGENCE; PERFORMANCE; MODEL;
D O I
10.1111/jop.13414
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Oral potentially malignant disorders represent precursor lesions that may undergo malignant transformation to oral cancer. There are many known risk factors associated with the development of oral potentially malignant disorders, and contribute to the risk of malignant transformation. Although many advances have been reported to understand the biological behavior of oral potentially malignant disorders, their clinical features that indicate the characteristics of malignant transformation are not well established. Early diagnosis of malignancy is the most important factor to improve patients' prognosis. The integration of machine learning into routine diagnosis has recently emerged as an adjunct to aid clinical examination. Increased performances of artificial intelligence AI-assisted medical devices are claimed to exceed the human capability in the clinical detection of early cancer. Therefore, the aim of this narrative review is to introduce artificial intelligence terminology, concepts, and models currently used in oncology to familiarize oral medicine scientists with the language skills, best research practices, and knowledge for developing machine learning models applied to the clinical detection of oral potentially malignant disorders.
引用
收藏
页码:197 / 205
页数:9
相关论文
共 48 条
[1]   Deep Learning Predicts the Malignant-Transformation-Free Survival of Oral Potentially Malignant Disorders [J].
Adeoye, John ;
Koohi-Moghadam, Mohamad ;
Lo, Anthony Wing Ip ;
Tsang, Raymond King-Yin ;
Chow, Velda Ling Yu ;
Zheng, Li-Wu ;
Choi, Siu-Wai ;
Thomson, Peter ;
Su, Yu-Xiong .
CANCERS, 2021, 13 (23)
[2]   Digital Microscopy, Image Analysis, and Virtual Slide Repository [J].
Aeffner, Famke ;
Adissu, Hibret A. ;
Boyle, Michael C. ;
Cardiff, Robert D. ;
Hagendorn, Erik ;
Hoenerhoff, Mark J. ;
Klopfleisch, Robert ;
Newbigging, Susan ;
Schaudien, Dirk ;
Turner, Oliver ;
Wilson, Kristin .
ILAR JOURNAL, 2018, 59 (01) :66-79
[3]   Application of artificial intelligence and machine learning for prediction of oral cancer risk [J].
Alhazmi, Anwar ;
Alhazmi, Yaser ;
Makrami, Ali ;
Masmali, Amal ;
Salawi, Nourah ;
Masmali, Khulud ;
Patil, Shankargouda .
JOURNAL OF ORAL PATHOLOGY & MEDICINE, 2021, 50 (05) :444-450
[4]   Structured crowdsourcing enables convolutional segmentation of histology images [J].
Amgad, Mohamed ;
Elfandy, Habiba ;
Hussein, Hagar ;
Atteya, Lamees A. ;
Elsebaie, Mai A. T. ;
Elnasr, Lamia S. Abo ;
Sakr, Rokia A. ;
Salem, Hazem S. E. ;
Ismail, Ahmed F. ;
Saad, Anas M. ;
Ahmed, Joumana ;
Elsebaie, Maha A. T. ;
Rahman, Mustafijur ;
Ruhban, Inas A. ;
Elgazar, Nada M. ;
Alagha, Yahya ;
Osman, Mohamed H. ;
Alhusseiny, Ahmed M. ;
Khalaf, Mariam M. ;
Younes, Abo-Alela F. ;
Abdulkarim, Ali ;
Younes, Duaa M. ;
Gadallah, Ahmed M. ;
Elkashash, Ahmad M. ;
Fala, Salma Y. ;
Zaki, Basma M. ;
Beezley, Jonathan ;
Chittajallu, Deepak R. ;
Manthey, David ;
Gutman, David A. ;
Cooper, Lee A. D. .
BIOINFORMATICS, 2019, 35 (18) :3461-3467
[5]   Field validation of deep learning based Point-of-Care device for early detection of oral malignant and potentially malignant disorders [J].
Birur, Praveen N. ;
Song, Bofan ;
Sunny, Sumsum P. ;
Keerthi, G. ;
Mendonca, Pramila ;
Mukhia, Nirza ;
Li, Shaobai ;
Patrick, Sanjana ;
Shubha, G. ;
Subhashini, A. R. ;
Imchen, Tsusennaro ;
Leivon, Shirley T. ;
Kolur, Trupti ;
Shetty, Vivek ;
Bhushan, Vidya R. ;
Vaibhavi, Daksha ;
Rajeev, Surya ;
Pednekar, Sneha ;
Banik, Ankita Dutta ;
Ramesh, Rohan Michael ;
Pillai, Vijay ;
Kathryn, O. S. ;
Smith, Petra Wilder ;
Sigamani, Alben ;
Suresh, Amritha ;
Liang, Rongguang ;
Kuriakose, Moni A. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[6]   A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models [J].
Christodoulou, Evangelia ;
Ma, Jie ;
Collins, Gary S. ;
Steyerberg, Ewout W. ;
Verbakel, Jan Y. ;
Van Calster, Ben .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2019, 110 :12-22
[7]   Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free whole-slide images [J].
Chuang, Wen-Yu ;
Chen, Chi-Chung ;
Yu, Wei-Hsiang ;
Yeh, Chi-Ju ;
Chang, Shang-Hung ;
Ueng, Shir-Hwa ;
Wang, Tong-Hong ;
Hsueh, Chuen ;
Kuo, Chang-Fu ;
Yeh, Chao-Yuan .
MODERN PATHOLOGY, 2021, 34 (10) :1901-1911
[8]   Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence [J].
Collins, Gary S. ;
Dhiman, Paula ;
Andaur Navarro, Constanza L. ;
Ma, Ji ;
Hooft, Lotty ;
Reitsma, Johannes B. ;
Logullo, Patricia ;
Beam, Andrew L. ;
Peng, Lily ;
Van Calster, Ben ;
van Smeden, Maarten ;
Riley, Richard D. ;
Moons, Karel G. M. .
BMJ OPEN, 2021, 11 (07)
[9]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.7326/M14-0698, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.1016/j.jclinepi.2014.11.010, 10.1136/bmj.g7594, 10.1038/bjc.2014.639]
[10]   Methodology to develop machine learning algorithms to improve performance in gastrointestinal endoscopy [J].
de lange, Thomas ;
Halvorsen, Pal ;
Riegler, Michael .
WORLD JOURNAL OF GASTROENTEROLOGY, 2018, 24 (45) :5057-5062