Deep learning-assisted analysis of single molecule dynamics from liquid-phase electron microscopy

被引:3
|
作者
Cheng, Bin [1 ]
Ye, Enze [2 ,3 ]
Sun, He [2 ]
Wang, Huan [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Ctr Spect, Ctr Soft Matter Sci & Engn,Beijing Natl Lab Mol Sc, Beijing, Peoples R China
[2] Peking Univ, Coll Future Technol, Natl Biomed Imaging Ctr, Beijing 100871, Peoples R China
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
High-throughput analysis - Liquid Phase - Liquid phasis - Low signal-to-noise ratio - Neural-networks - Phase electron microscopy - Ratio images - Segmentation accuracy - Single molecule - Single-molecule dynamics;
D O I
10.1039/d2cc05354c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We apply U-Net and UNet++ to analyze single-molecule movies obtained from liquid-phase electron microscopy. Neural networks allow full automation, and high throughput analysis of these low signal-to-noise ratio images, while achieving higher segmentation accuracy, and avoiding subjective errors as compared to the conventional threshold methods. The analysis enables the quantification of transient dynamics in chemical systems and the capture of rare intermediate states by resolving local conformational changes within a single molecule.
引用
收藏
页码:1701 / 1704
页数:4
相关论文
共 50 条
  • [41] On-Chip Electrochemical Analysis Combined with Liquid-Phase Electron Microscopy of Zinc Deposition/Dissolution
    Sasaki, Yuki
    Yoshida, Kaname
    Kuwabara, Akihide
    Ikuhara, Yuichi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (11)
  • [42] Deep Learning Algorithms in Single Particle Analysis by Cryo-electron Microscopy
    Sorzano, C. O. S.
    Herreros, D.
    Carazo, J. M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2024, 80
  • [43] Visualizing Dynamic Environmental Processes in Liquid at Nanoscale via Liquid-Phase Electron Microscopy
    Li, Meirong
    Ling, Lan
    ACS NANO, 2022, 16 (10) : 15503 - 15511
  • [44] Mapping and Controlling Liquid Layer Thickness in Liquid-Phase (Scanning) Transmission Electron Microscopy
    Wu, Hanglong
    Su, Hao
    Joosten, Rick R. M.
    Keizer, Arthur D. A.
    van Hazendonk, Laura S.
    Wirix, Maarten J. M.
    Patterson, Joseph P.
    Laven, Jozua
    de With, Gijsbertus
    Friedrich, Heiner
    SMALL METHODS, 2021, 5 (06):
  • [45] Deep Learning and Single-Molecule Localization Microscopy Reveal Nanoscopic Dynamics of DNA Entanglement Loci
    Serag, Maged F.
    Abadi, Maram
    Al-Zarah, Hajar
    Ibrahim, Omar
    Habuchi, Satoshi
    ACS NANO, 2025, 19 (06) : 6236 - 6249
  • [46] Deep Learning-Assisted Measurement of Liquid Sheet Structure in the Atomization of Hydraulic Nozzle Spraying
    Yan, Wenlong
    Li, Longlong
    Song, Jianli
    Hu, Peng
    Xu, Gang
    Wu, Qiangjia
    Zhang, Ruirui
    Chen, Liping
    AGRONOMY-BASEL, 2025, 15 (02):
  • [47] Deep learning-assisted smartphone-based quantitative microscopy for label-free peripheral blood smear analysis
    Huang, Bingxin
    Kang, Lei
    Tsang, Victor T. C.
    Lo, Claudia T. K.
    Wong, Terence T. W.
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (04): : 2636 - 2651
  • [48] Precise measurement of nanoscopic septin ring structures with deep learning-assisted quantitative superresolution microscopy
    Zehtabian, Amin
    Mueller, Paul Markus
    Goisser, Maximilian
    Obendorf, Leon
    Jaenisch, Lea
    Huempfer, Nadja
    Rentsch, Jakob
    Ewers, Helge
    MOLECULAR BIOLOGY OF THE CELL, 2022, 33 (08)
  • [49] Supramolecular Approaches to Graphene: From Self-Assembly to Molecule-Assisted Liquid-Phase Exfoliation
    Ciesielski, Artur
    Samori, Paolo
    ADVANCED MATERIALS, 2016, 28 (29) : 6030 - 6051
  • [50] Toward sub-second solution exchange dynamics in flow reactors for liquid-phase transmission electron microscopy
    Stefan Merkens
    Christopher Tollan
    Giuseppe De Salvo
    Katarzyna Bejtka
    Marco Fontana
    Angelica Chiodoni
    Joscha Kruse
    Maiara Aime Iriarte-Alonso
    Marek Grzelczak
    Andreas Seifert
    Andrey Chuvilin
    Nature Communications, 15