Deep learning-assisted analysis of single molecule dynamics from liquid-phase electron microscopy

被引:3
|
作者
Cheng, Bin [1 ]
Ye, Enze [2 ,3 ]
Sun, He [2 ]
Wang, Huan [1 ]
机构
[1] Peking Univ, Coll Chem & Mol Engn, Ctr Spect, Ctr Soft Matter Sci & Engn,Beijing Natl Lab Mol Sc, Beijing, Peoples R China
[2] Peking Univ, Coll Future Technol, Natl Biomed Imaging Ctr, Beijing 100871, Peoples R China
[3] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
关键词
High-throughput analysis - Liquid Phase - Liquid phasis - Low signal-to-noise ratio - Neural-networks - Phase electron microscopy - Ratio images - Segmentation accuracy - Single molecule - Single-molecule dynamics;
D O I
10.1039/d2cc05354c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We apply U-Net and UNet++ to analyze single-molecule movies obtained from liquid-phase electron microscopy. Neural networks allow full automation, and high throughput analysis of these low signal-to-noise ratio images, while achieving higher segmentation accuracy, and avoiding subjective errors as compared to the conventional threshold methods. The analysis enables the quantification of transient dynamics in chemical systems and the capture of rare intermediate states by resolving local conformational changes within a single molecule.
引用
收藏
页码:1701 / 1704
页数:4
相关论文
共 50 条
  • [1] Recovering a Molecule's 3D Dynamics from Liquid-phase Electron Microscopy Movies
    Ye, Enze
    Wang, Yuhang
    Zhang, Hong
    Gao, Yiqin
    Wang, Huan
    Sun, He
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 10733 - 10743
  • [2] Liquid-phase Electron Microscopy Imaging of Polymer Dynamics
    Zhang, De-yi
    Li, Jia-ye
    Xu, Zhun
    Wang, Huan
    ACTA POLYMERICA SINICA, 2024, 55 (02): : 235 - 254
  • [3] Single Molecule Imaging with Liquid Phase Electron Microscopy
    Li, Jia-Ye
    Zhang, De-Yi
    Mao, Sheng
    Wang, Huan
    CHINESE JOURNAL OF CHEMISTRY, 2023, 41 (06) : 679 - 684
  • [4] Deep learning-assisted flexible piezoresistive sensor with liquid-phase reduced metal electrodes for fitness movement recognition and correction
    He, Weiwei
    Zhang, Yanzhen
    Zhang, Puye
    Zheng, Jiajia
    Xue, Boce
    Hu, Guofang
    Li, Zihao
    Wu, Yuyao
    Zhang, Renyun
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [5] Dynamics of gold nanoparticle clusters observed with liquid-phase electron microscopy
    Cepeda-Perez, Elisa
    de Jonge, Niels
    MICRON, 2019, 117 : 68 - 75
  • [6] Liquid-phase scanning electron microscopy for single membrane protein imaging
    Wang, Li
    Li, Changshuo
    Li, Jintao
    Zhang, Xiaofei
    Li, Xiaochen
    Cui, Yiran
    Xia, Yang
    Zhang, Yinqi
    Mao, Shengcheng
    Ji, Yuan
    Sheng, Wang
    Han, Xiaodong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 590 : 163 - 168
  • [7] Lithium solvation structure and dynamics in an ionic liquid electrolyte: A deep learning-assisted analysis on polarizable molecular dynamics simulations
    Park, Chanui
    Kim, Sebin
    Kim, Sangdeok
    Lee, Minhwan
    Kim, Seulwoo
    Cho, JunBeom
    Park, Anseong
    Kwon, Sangwoo
    Kim, Minwoo
    Rho, Seunghyok
    Jung, EunYeong
    Lee, Won Bo
    Chemical Engineering Journal, 2025, 508
  • [8] Deep learning-assisted phase equilibrium analysis for producing natural hydrogen
    Zhang, Tao
    Zhang, Yanhui
    Katterbauer, Klemens
    Al Shehri, Abdallah
    Sun, Shuyu
    Hoteit, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 473 - 486
  • [9] Liquid-Phase Electron Microscopy with Controllable Liquid Thickness
    Keskin, Sercan
    Kunnas, Peter
    de Jonge, Niels
    NANO LETTERS, 2019, 19 (07) : 4608 - 4613
  • [10] Deep learning-assisted frequency-domain photoacoustic microscopy
    Tserevelakis, George J.
    Barmparis, Georgios D.
    Kokosalis, Nikolaos
    Giosa, Eirini Smaro
    Pavlopoulos, Anastasios
    Tsironis, Giorgos P.
    Zacharakis, Giannis
    OPTICS LETTERS, 2023, 48 (10) : 2720 - 2723