DOD and DOA Estimation From Incomplete Data Based on PARAFAC and Atomic Norm Minimization Method

被引:9
作者
Gao, Sizhe [1 ]
Ma, Hui [1 ]
Liu, Hongwei [1 ]
Yang, Yang [1 ]
机构
[1] Xidian Univ, Collaborat Innovat Ctr Informat Sensing & Understa, Natl Lab Radar Signal Proc, Xian 710071, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Angle estimation; atomic norm minimization (ANM); multiple-input multiple-output (MIMO) radar; tensor parallel factor (PARAFAC); MULTIDIMENSIONAL HARMONIC RETRIEVAL; BISTATIC MIMO RADAR; ESTIMATION ACCURACY; ANGLE ESTIMATION; LOCALIZATION; DECOMPOSITIONS; COMPLEXITY; ARRAYS; ESPRIT; RANK;
D O I
10.1109/TGRS.2023.3234576
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this article, we propose an efficient direction of departure (DOD) and direction of arrival (DOA) estimation method for bistatic multiple-input multiple-output (MIMO) radar with faulty arrays. A third-order tensor model is built, and the measurement 3-D structure can be better utilized than the traditional matrix model. Subsequently, the atomic norm minimization (ANM) technique is used to further improve the angle estimation performance. Furthermore, we found in the research process that when the faulty arrays still maintain the symmetry property, the measurement tensor can be converted to the real-valued domain by the forward-backward averaging technique and the unitary transform technique. The new algorithm we proposed exploits the multidimensional structure of the signal without estimating the signal subspace. Comparing with traditional matrix completion (MC) methods, it has a better performance in terms of robustness and resolving correlated targets. Also, the algorithm proposed in this article does not require angle pairing. Simulation results verify the effectiveness of the proposed algorithm.
引用
收藏
页数:14
相关论文
共 42 条
[1]   LOW COMPLEXITY DAMPED GAUSS-NEWTON ALGORITHMS FOR CANDECOMP/PARAFAC [J].
Anh-Huy Phan ;
Tichavsky, Petr ;
Cichocki, Andrzej .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (01) :126-147
[2]   Joint Sensor Failure Detection and Corrupted Covariance Matrix Recovery in Bistatic MIMO Radar With Impaired Arrays [J].
Chen, Jinli ;
Zhang, Tingxiao ;
Li, Jiaqiang ;
Chen, Xuan .
IEEE SENSORS JOURNAL, 2019, 19 (14) :5834-5842
[3]   A Bayesian Sparse-Plus-Low-Rank Matrix Decomposition Method for Direction-of-Arrival Tracking [J].
Das, Anup .
IEEE SENSORS JOURNAL, 2017, 17 (15) :4894-4902
[4]   Angle estimation using ESPRIT in MIMO radar [J].
Duofang, C. ;
Baixiao, C. ;
Guodong, Q. .
ELECTRONICS LETTERS, 2008, 44 (12) :770-770
[5]   MIMO radar: An idea whose time has come [J].
Fishler, E ;
Haimovich, A ;
Blum, R ;
Chizhik, D ;
Cimini, L ;
Valenzuela, R .
PROCEEDINGS OF THE IEEE 2004 RADAR CONFERENCE, 2004, :71-78
[6]   UNITARY ESPRIT - HOW TO OBTAIN INCREASED ESTIMATION ACCURACY WITH A REDUCED COMPUTATIONAL BURDEN [J].
HAARDT, M ;
NOSSEK, JA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (05) :1232-1242
[7]   Higher-order SVD-based subspace estimation to improve the parameter estimation accuracy in multidimensional harmonic retrieval problems [J].
Haardt, Martin ;
Roemer, Florian ;
Del Galdo, Giovanni .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (07) :3198-3213
[8]   MIMO radar with widely separated antennas [J].
Haimovich, Alexander M. ;
Blum, Rick S. ;
Cimini, Leonard J., Jr. .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :116-129
[9]   Joint DOD and DOA estimation for bistatic MIMO radar [J].
Jin, Ming ;
Liao, Guisheng ;
Li, Jun .
SIGNAL PROCESSING, 2009, 89 (02) :244-251
[10]  
Kase Y, 2018, WORKS POSIT NAVIGAT