Facile electrosynthesis of polyaniline|gold nanoparticle core-shell nanofiber for efficient electrocatalytic CO2 reduction

被引:8
作者
Wang, Tzu-Hsuan [1 ,2 ]
Lin, Chia-Yu [1 ,3 ,4 ]
Huang, Yu-Cheng [1 ]
Li, Chia-Ying [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 70101, Taiwan
[2] Natl Cheng Kung Univ, Hierarch Green Energy Mat Hi GEM Res Ctr, Tainan 70101, Taiwan
[3] Natl Cheng Kung Univ, Acad Innovat Semicond & Sustainable Mfg, Program Key Mat, Program Smart & Sustainable Mfg, Tainan 70101, Taiwan
[4] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 70101, Taiwan
关键词
Core -shell structure; Electrochemical CO 2 reduction; Electrochemical deposition; Gold nanoparticles; Polyaniline nanofiber; SUPPRESSING H-2 EVOLUTION; IN-SITU; ELECTROREDUCTION; AU; COMPOSITE; DEGRADATION; POLYMERS; ELECTROCHEMISTRY; POLYMERIZATION; DISPERSION;
D O I
10.1016/j.electacta.2022.141500
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical CO2 reduction (e-CO2RR) into valuable chemicals has been considered as a promising approach towards the carbon-neutral economy. The development of facile and scalable electrosynthetic methods to pre-pare electrocatalysts with high activity and selectivity is therefore of great importance. In this work, we developed a facile and scalable electrosynthetic approach to prepare core-shell-structured polyaniline|gold nanoparticles nanofiber (nanoPANI|Au) as an efficient electrocatalyst for e-CO2RR. The growth mechanism of nanoPANI|Au was thoroughly investigated, and the applied current used for the electrosynthesis of nanoPANI|Au was found to play a crucial role in determining the structure, size, and electrochemically-available surface area (ECSA) of deposited polyaniline and gold. Under optimal conditions, the prepared nanoPANI|Au exhibited a satisfactory selectivity (Faradaic efficiency: 70.0 +/- 2.1%) towards the generation of CO from e-CO2RR with a high turnover frequency of 0.40 +/- 0.02 s-1 and a CO-mass activity of 5.67 +/- 0.31 A g-1 at a moderate over -potential of 0.59 V in NaHCO3 (0.1 M). This work opens a new avenue for the preparation of core-shell -structured conducting polymer|metal nanoparticles as the electrocatalysts for e-CO2RR.
引用
收藏
页数:10
相关论文
共 61 条
  • [1] Interfacial Synthesis of Gold-Polyaniline Nanocomposite and Its Electrocatalytic Application
    Bogdanovic, Una
    Pasti, Igor
    Ciric-Marjanovic, Gordana
    Mitric, Miodrag
    Ahrenkiel, Scott P.
    Vodnik, Vesna
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (51) : 28393 - 28403
  • [2] Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles
    Chen, Yihong
    Li, Christina W.
    Kanan, Matthew W.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (49) : 19969 - 19972
  • [3] The Role of Adsorbed CN and CI on an Au Electrode for Electrochemical CO2 Reduction
    Cho, Minhyung
    Song, Jun Tae
    Back, Seoin
    Jung, Yousung
    Oh, Jihun
    [J]. ACS CATALYSIS, 2018, 8 (02): : 1178 - 1185
  • [4] Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4
    Choi, Chungseok
    Kwon, Soonho
    Cheng, Tao
    Xu, Mingjie
    Tieu, Peter
    Lee, Changsoo
    Cai, Jin
    Lee, Hyuck Mo
    Pan, Xiaoqing
    Duan, Xiangfeng
    Goddard, William A., III
    Huang, Yu
    [J]. NATURE CATALYSIS, 2020, 3 (10) : 804 - 812
  • [5] Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering
    Chung, Min Wook
    Cha, In Young
    Ha, Min Gwan
    Na, Youngseung
    Hwang, Jungsoo
    Ham, Hyung Chul
    Kim, Hyoung-Juhn
    Henkensmeier, Dirk
    Yoo, Sung Jong
    Kim, Jin Young
    Lee, So Young
    Park, Hyun S.
    Jang, Jong Hyun
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 237 : 673 - 680
  • [6] Enhanced CO2 Electrochemical Reduction Performance over Cu@AuCu Catalysts at High Noble Metal Utilization Efficiency
    Dai, Sheng
    Huang, Tzu-Hsi
    Liu, Wei-, I
    Hsu, Chia-Wei
    Lee, Sheng-Wei
    Chen, Tsan-Yao
    Wang, Ya-Chen
    Wang, Jeng-Han
    Wang, Kuan-Wen
    [J]. NANO LETTERS, 2021, 21 (21) : 9293 - 9300
  • [7] Recent advances in polyaniline based biosensors
    Dhand, Chetna
    Das, Maumita
    Datta, Monika
    Malhotra, B. D.
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (06) : 2811 - 2821
  • [8] Raman dispersion in polyaniline base forms
    do Nascimento, Gustavo M.
    Kobata, Pedro Y. G.
    Millen, Ricardo P.
    Temperini, Marcia L. A.
    [J]. SYNTHETIC METALS, 2007, 157 (6-7) : 247 - 251
  • [9] Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO
    Gu, Jun
    Hsu, Chia-Shuo
    Bai, Lichen
    Chen, Hao Ming
    Hu, Xile
    [J]. SCIENCE, 2019, 364 (6445) : 1091 - +
  • [10] Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study
    Guo, Yaping
    Zhou, Yu
    [J]. EUROPEAN POLYMER JOURNAL, 2007, 43 (06) : 2292 - 2297