Monotone continuous dependence of solutions of singular quenching parabolic problems

被引:2
作者
Diaz, Jesus Ildefonso [1 ]
Giacomoni, Jacques [2 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Plaza Ciencias 3, Madrid 28040, Spain
[2] Univ Pau & Pays Adour, LMAP UMR E2S UPPA CNRS 5142, Bat IPRA,Ave Univ, F-64013 Pau, France
关键词
Quenching type singular parabolic equations; Continuous dependence; Nonnegative solutions; Very weak solutions; FREE-BOUNDARY SOLUTIONS; EQUATIONS; DIFFUSION; REGULARITY;
D O I
10.1007/s12215-022-00814-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the continuous dependence, with respect to the initial datum of solutions of the "quenching parabolic problem" partial derivative(t)u - Delta u + chi({u>0})u(-beta) = lambda u(p), with zero Dirichlet boundary conditions, when beta is an element of (0, 1), p is an element of (0, 1], lambda >= 0 and chi({u>0}) denotes the characteristic function of the set of points (x, t) where u(x, t) > 0. Notice that the absorption term chi({u>0})u(-beta) is singular and monotone decreasing which does not allow the application of standard monotonicity arguments.
引用
收藏
页码:2593 / 2602
页数:10
相关论文
共 41 条
[21]   A Liouville-type theorem in a half-space and its applications to the gradient blow-up behavior for superquadratic diffusive Hamilton-Jacobi equations [J].
Filippucci, Roberta ;
Pucci, Patrizia ;
Souplet, Philippe .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (04) :321-349
[22]  
Gamba IM, 2001, ARCH RATION MECH AN, V156, P183, DOI 10.1007/s002050100114
[23]  
Ghergu M., 2008, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis
[24]   Complete quenching for a quasilinear parabolic equation [J].
Giacomoni, Jacques ;
Sauvy, Paul ;
Shmarev, Sergey .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) :607-624
[25]   On the Cauchy problem for a reaction-diffusion equation with a singular nonlinearity [J].
Guo, Zongming ;
Wei, Juncheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 240 (02) :279-323
[26]  
Hernández J, 2006, HBK DIFF EQUAT STATI, V3, P317, DOI 10.1016/S1874-5733(06)80008-2
[27]  
Horváth TL, 2009, DIFFER INTEGRAL EQU, V22, P787
[28]   ON VERY WEAK SOLUTIONS OF SEMI-LINEAR ELLIPTIC EQUATIONS IN THE FRAMEWORK OF WEIGHTED SPACES WITH RESPECT TO THE DISTANCE TO THE BOUNDARY [J].
Idelfonso Diaz, Jesus ;
Rakotoson, Jean Michel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) :1037-1058
[29]  
Kawarada H., 1975, Publ. Res. Inst. Math. Sci., V10, P729, DOI [10.2977/prims/1195191889, DOI 10.2977/PRIMS/1195191889]
[30]   ON DEGENERATE DIFFUSION WITH VERY STRONG ABSORPTION [J].
KAWOHL, B ;
KERSNER, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1992, 15 (07) :469-477