Monotone continuous dependence of solutions of singular quenching parabolic problems

被引:2
作者
Diaz, Jesus Ildefonso [1 ]
Giacomoni, Jacques [2 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Plaza Ciencias 3, Madrid 28040, Spain
[2] Univ Pau & Pays Adour, LMAP UMR E2S UPPA CNRS 5142, Bat IPRA,Ave Univ, F-64013 Pau, France
关键词
Quenching type singular parabolic equations; Continuous dependence; Nonnegative solutions; Very weak solutions; FREE-BOUNDARY SOLUTIONS; EQUATIONS; DIFFUSION; REGULARITY;
D O I
10.1007/s12215-022-00814-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the continuous dependence, with respect to the initial datum of solutions of the "quenching parabolic problem" partial derivative(t)u - Delta u + chi({u>0})u(-beta) = lambda u(p), with zero Dirichlet boundary conditions, when beta is an element of (0, 1), p is an element of (0, 1], lambda >= 0 and chi({u>0}) denotes the characteristic function of the set of points (x, t) where u(x, t) > 0. Notice that the absorption term chi({u>0})u(-beta) is singular and monotone decreasing which does not allow the application of standard monotonicity arguments.
引用
收藏
页码:2593 / 2602
页数:10
相关论文
共 41 条
[1]  
Ambroso A, 2001, ASYMPTOTIC ANAL, V25, P39
[2]  
[Anonymous], 1960, Osaka Math. J.
[3]  
[Anonymous], 1996, Adv. Differ. Equ
[4]  
[Anonymous], 1979, Ann. Fac. Sci., Toulose Math. (5), DOI DOI 10.5802/AFST.535
[5]  
Bandle C., 1986, BOOLE PRESS C SER, V8, P7
[6]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[7]  
Cazenave T., 1998, Oxford Lecture Series in Mathematics and Its Applications, 13
[8]  
D?vila J., 2010, REV INTEGR TEMAS MAT, V28, P85
[9]  
Dao AN., 2016, ELECTRON J DIFFER EQ, V136, P1
[10]   Existence and asymptotic behavior for a singular parabolic equation [J].
Dávila, J ;
Montenegro, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (05) :1801-1828