Covering action on Conley index theory

被引:1
作者
Lima, D. V. S. [1 ]
Da Silveira, M. R. [1 ]
Vieira, E. R. [2 ,3 ]
机构
[1] Fed Univ ABC, CMCC, Santo Andre, SP, Brazil
[2] Rutgers State Univ, DIMACS, Piscataway, NJ USA
[3] Univ Fed Goias, IME, Goiania, Go, Brazil
基金
巴西圣保罗研究基金会; 美国国家科学基金会;
关键词
Conley index; connection matrix; covering space; circle-valued function; Novikov complex; CONNECTION MATRIX; MORSE;
D O I
10.1017/etds.2022.13
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply Conley index theory in a covering space of an invariant set S, possibly not isolated, in order to describe the dynamics in S. More specifically, we consider the action of the covering translation group in order to define a topological separation of S which distinguishes the connections between the Morse sets within a Morse decomposition of S. The theory developed herein generalizes the classical connection matrix theory, since one obtains enriched information on the connection maps for non-isolated invariant sets, as well as for isolated invariant sets. Moreover, in the case of an infinite cyclic covering induced by a circle-valued Morse function, one proves that the Novikov differential of f is a particular case of the p-connection matrix defined herein.
引用
收藏
页码:1633 / 1665
页数:33
相关论文
共 22 条
[1]  
Banyaga A., 2013, KLUWER TEXTS MATH SC, V29
[2]  
Clark A, 2000, HOUSTON J MATH, V26, P661
[3]  
Conley C, 1978, CBMS Regional Conference Series in Mathematics, V38
[4]   Rigidity and gluing for Morse and Novikov complexes [J].
Cornea, O ;
Ranicki, A .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2003, 5 (04) :343-394
[6]   THE CONNECTION MATRIX-THEORY FOR MORSE DECOMPOSITIONS [J].
FRANZOSA, RD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 311 (02) :561-592
[7]   TRANSITION MATRIX THEORY [J].
Franzosa, Robert ;
Vieira, Ewerton R. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (11) :7737-7764
[8]   GENERALIZED TOPOLOGICAL TRANSITION MATRIX [J].
Franzosa, Robert ;
de Rezende, Ketty A. ;
Vieira, Ewerton R. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (01) :183-212
[9]   CANCELLATIONS FOR CIRCLE-VALUED MORSE FUNCTIONS VIA SPECTRAL SEQUENCES [J].
Lima, Dahisy V. de S. ;
Manzoli Neto, Oziride ;
de Rezende, Ketty A. ;
da Silveira, Mariana R. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (01) :259-311
[10]  
Lima DVD, 2014, TOPOL METHOD NONL AN, V44, P471