Asymptotically linear magnetic fractional problems

被引:1
作者
Bartolo, Rossella [1 ]
d'Avenia, Pietro [1 ]
Bisci, Giovanni Molica [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Italy
关键词
Magnetic fractional Laplacian; Variational methods; Asymptotically linear problem; Variational Dirichlet eigenvalues; Abstract critical point theorem; OPERATORS; THEOREMS;
D O I
10.1016/j.aml.2024.109001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is investigating the existence and multiplicity of weak solutions to nonlocal equations involving the magnetic fractional Laplacian, when the nonlinearity is subcritical and asymptotically linear at infinity. We prove existence and multiplicity results by using variational tools, extending to the magnetic local and non -local setting some known results for the classical and the fractional Laplace operators.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Applebaum D., 2004, Notices Amer Math Soc, V51, P1336
[2]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[3]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[4]   Asymptotically linear fractional p-Laplacian equations [J].
Bartolo, Rossella ;
Bisci, Giovanni Molica .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) :427-442
[5]   A pseudo-index approach to fractional equations [J].
Bartolo, Rossella ;
Bisci, Giovanni Molica .
EXPOSITIONES MATHEMATICAE, 2015, 33 (04) :502-516
[6]   Perturbed asymptotically linear problems [J].
Bartolo, Rossella ;
Candela, Anna Maria ;
Salvatore, Addolorata .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (01) :89-101
[7]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[8]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[9]   Limiting embedding theorems for Ws,p,p when s ↑ 1 and applications [J].
Bourgain, J ;
Brezis, H ;
Mironescu, P .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 87 (1) :77-101
[10]   GROUND STATES FOR FRACTIONAL MAGNETIC OPERATORS [J].
d'Avenia, Pietro ;
Squassina, Marco .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2018, 24 (01) :1-24