Pólya-Szegö type inequality and imbedding theorems for weighted Sobolev spaces

被引:0
作者
Nga, N. Q. [1 ]
Tri, N. M. [1 ]
Tuan, D. A. [2 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi, Vietnam
[2] Vietnam Natl Univ, Univ Sci, 334 Nguyen Trai, Hanoi, Vietnam
关键词
Isoperimetric inequality; Best Sobolev constant; Polya-Szego inequality; Rearrangement; Degenerate elliptic equations; ISOPERIMETRIC INEQUALITY;
D O I
10.1007/s13324-024-00877-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we will establish a new Polya-Szego type inequality for a weighted gradient of a function on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>2$$\end{document} with respect to a weighted area. In order to do that we need to study an isoperimetric problem for the weighted area. We then apply the inequality to prove embedding theorems for weighted Sobolev spaces and to calculate the best constant in the Sobolev imbedding theorems. In our upcoming manuscript the obtained results in this note will be used to study boundary value problems for semilinear degenerate elliptic equations, see Luyen et al. (arXiv:2303.14661).
引用
收藏
页数:12
相关论文
共 18 条
  • [1] Alvino A., 2021, Optim. Calc. Var, V27, P1
  • [2] Aubin T., 1976, J. Differential Geometry, V11, P573
  • [3] On the Grushin operator and hyperbolic symmetry
    Beckner, W
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 1233 - 1246
  • [4] A Weighted Isoperimetric Inequality in an Orthant
    Brock, F.
    Chiacchio, F.
    Mercaldo, A.
    [J]. POTENTIAL ANALYSIS, 2014, 41 (01) : 171 - 186
  • [5] Sobolev and isoperimetric inequalities with monomial weights
    Cabre, Xavier
    Ros-Oton, Xavier
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) : 4312 - 4336
  • [6] AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS
    CAPOGNA, L
    DANIELLI, D
    GAROFALO, N
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) : 1765 - 1794
  • [7] Chen H, 2020, CALC VAR PARTIAL DIF, V59, DOI 10.1007/s00526-020-01765-x
  • [8] Cianchi A, 2002, ARCH RATION MECH AN, V165, P1, DOI [10.1007/s00205-002-0214-9, 10.1007/S00205-002-0214-9]
  • [9] Divergent operator with degeneracy and related sharp inequalities
    Dou, Jingbo
    Sun, Liming
    Wang, Lei
    Zhu, Meijun
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (02)
  • [10] On semilinear Δλ-Laplace equation
    Kogoj, Alessia E.
    Lanconelli, Ermanno
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4637 - 4649