Few-Cycle Surface Plasmon Polaritons

被引:1
作者
Komatsu, Kazma [1 ]
Papa, Zsuzsanna [2 ,3 ]
Jauk, Thomas [1 ]
Bernecker, Felix [1 ]
Toth, Lazar [3 ]
Lackner, Florian [1 ]
Ernst, Wolfgang E. [1 ]
Ditlbacher, Harald [4 ]
Krenn, Joachim R. [4 ]
Ossiander, Marcus [1 ,5 ]
Dombi, Peter [2 ,3 ]
Schultze, Martin [1 ]
机构
[1] Graz Univ Technol, Inst Expt Phys, A-8010 Graz, Austria
[2] Wigner Res Ctr Phys, H-1121 Budapest, Hungary
[3] ELI ALPS Res Inst, H-6728 Szeged, Hungary
[4] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
[5] Harvard Univ, Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
surface plasmon polaritons; ultrafast plasmonics; plasmonic waveguides; femtosecond dynamics; PHOTOEMISSION; LIGHT; PROPAGATION; MICROSCOPY; DISPERSION;
D O I
10.1021/acs.nanolett.3c04991
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface plasmon polaritons (SPPs) can confine and guide light in nanometer volumes and are ideal tools for achieving electric field enhancement and the construction of nanophotonic circuitry. The realization of the highest field strengths and fastest switching requires confinement also in the temporal domain. Here, we demonstrate a tapered plasmonic waveguide with an optimized grating structure that supports few-cycle surface plasmon polaritons with >70 THz bandwidth while achieving >50% light-field-to-plasmon coupling efficiency. This enables us to observe the-to our knowledge-shortest reported SPP wavepackets. Using time-resolved photoelectron microscopy with suboptical-wavelength spatial and sub-10 fs temporal resolution, we provide full spatiotemporal imaging of co- and counter-propagating few-cycle SPP wavepackets along tapered plasmonic waveguides. By comparing their propagation, we track the evolution of the laser-plasmon phase, which can be controlled via the coupling conditions.
引用
收藏
页码:2637 / 2642
页数:6
相关论文
共 40 条
  • [1] [Anonymous], 1998, Handbook of Optical Constants of Solids
  • [2] Surface plasmon subwavelength optics
    Barnes, WL
    Dereux, A
    Ebbesen, TW
    [J]. NATURE, 2003, 424 (6950) : 824 - 830
  • [3] Femtosecond Nanofocusing with Full Optical Waveform Control
    Berweger, Samuel
    Atkin, Joanna M.
    Xu, Xiaoji G.
    Olmon, Robert L.
    Raschke, Markus B.
    [J]. NANO LETTERS, 2011, 11 (10) : 4309 - 4313
  • [4] Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy
    Buckanie, N. M.
    Kirschbaum, P.
    Sindermann, S.
    Heringdorf, F. -J. Meyer zu
    [J]. ULTRAMICROSCOPY, 2013, 130 : 49 - 53
  • [5] Uncovering surface plasmon optical resonances in nanohole arrays through interferometric photoemission electron microscopy
    Crampton, Kevin T.
    Joly, Alan G.
    El-Khoury, Patrick Z.
    [J]. APPLIED PHYSICS LETTERS, 2022, 120 (08)
  • [6] Direct Visualization of Counter-Propagating Surface Plasmons in Real Space-Time
    Crampton, Kevin T.
    Joly, Alan G.
    El-Khoury, Patrick Z.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (19) : 5694 - 5699
  • [7] Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time
    Dabrowski, Maciej
    Dai, Yanan
    Petek, Hrvoje
    [J]. CHEMICAL REVIEWS, 2020, 120 (13) : 6247 - 6287
  • [8] Davison A. C., 1997, BOOTSTRAP METHODSAND
  • [9] Observation of few-cycle, strong-field phenomena in surface plasmon fields
    Dombi, P.
    Irvine, S. E.
    Racz, P.
    Lenner, M.
    Kroo, N.
    Farkas, G.
    Mitrofanov, A.
    Baltuska, A.
    Fuji, T.
    Krausz, F.
    Elezzabi, A. Y.
    [J]. OPTICS EXPRESS, 2010, 18 (23): : 24206 - 24212
  • [10] Strong-field nano-optics
    Dombi, Peter
    Papa, Zsuzsanna
    Vogelsang, Jan
    Yalunin, Sergey V.
    Sivis, Murat
    Herink, Georg
    Schaefer, Sascha
    Gross, Petra
    Ropers, Claus
    Lienau, Christoph
    [J]. REVIEWS OF MODERN PHYSICS, 2020, 92 (02)