Effect of Graphene on the Performance of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries

被引:5
|
作者
Ni, Chengyuan [1 ]
Xia, Chengdong [1 ]
Liu, Wenping [2 ,3 ]
Xu, Wei [1 ]
Shan, Zhiqiang [4 ]
Lei, Xiaoxu [2 ]
Qin, Haiqing [2 ]
Tao, Zhendong [1 ]
机构
[1] Quzhou Univ, Key Lab Air Driven Equipment Technol Zhejiang Prov, Quzhou 324000, Peoples R China
[2] China Nonferrous Met Guilin Geol & Min Co Ltd, Guangxi Key Lab Superhard Mat, Guangxi Technol Innovat Ctr Special Mineral Mat, Natl Engn Res Ctr Special Mineral Mat, Guilin 541004, Peoples R China
[3] Guilin Univ Elect Technol, Sch Mat Sci & Engn, Guangxi Key Lab Informat Mat, Guilin 541004, Peoples R China
[4] Liuzhou Vocat & Tech Coll, Sch Environm & Food Engn, Liuzhou 545000, Peoples R China
关键词
nano-Si; graphite; graphene; Li-ion batteries; electrochemical performance;
D O I
10.3390/ma17030754
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
(Si/graphite)@C and (Si/graphite/graphene)@C were synthesized by coating asphalt-cracked carbon on the surface of a Si-based precursor by spray drying, followed by heat treatment at 1000 degrees C under vacuum for 2h. The impact of graphene on the performance of silicon-carbon composite-based anode materials for lithium-ion batteries (LIBs) was investigated. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) images of (Si/graphite/graphene)@C showed that the nano-Si and graphene particles were dispersed on the surface of graphite, and thermogravimetric analysis (TGA) curves indicated that the content of silicon in the (Si/graphite/graphene)@C was 18.91%. More bituminous cracking carbon formed on the surface of the (Si/graphite/graphene)@C due to the large specific surface area of graphene. (Si/Graphite/Graphene)@C delivered first discharge and charge capacities of 860.4 and 782.1 mAh/g, respectively, initial coulombic efficiency (ICE) of 90.9%, and capacity retention of 74.5% after 200 cycles. The addition of graphene effectively improved the cycling performance of the Si-based anode materials, which can be attributed to the reduction of electrochemical polarization due to the good structural stability and high conductivity of graphene.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A 3D pore-nest structured silicon-carbon composite as an anode material for high performance lithium-ion batteries
    Li, Yankai
    Long, Zhi
    Xu, Pengyuan
    Sun, Yang
    Song, Kai
    Zhang, Xiaokang
    Ma, Shuhua
    INORGANIC CHEMISTRY FRONTIERS, 2017, 4 (12): : 1996 - 2004
  • [42] In Situ Synthesis of Silicon-Carbon Composites and Application as Lithium-Ion Battery Anode Materials
    Kim, Dae-Yeong
    Kim, Han-Vin
    Kang, Jun
    MATERIALS, 2019, 12 (18)
  • [43] Submicron silicon encapsulated with graphene and carbon as a scalable anode for lithium-ion batteries
    Lee, Byeongyong
    Liu, Tianyuan
    Kim, Sun Kyung
    Chang, Hankwon
    Eom, Kwangsup
    Xie, Lixin
    Chen, Shuo
    Jang, Hee Dong
    Lee, Seung Woo
    CARBON, 2017, 119 : 438 - 445
  • [44] Robust silicon/carbon composite anode materials with high tap density and excellent cycling performance for lithium-ion batteries
    Xu, Xintong
    Mu, Xiao
    Huang, Tao
    Yu, Aishui
    JOURNAL OF POWER SOURCES, 2024, 614
  • [45] Novel binary regulated silicon-carbon materials as high-performance anodes for lithium-ion batteries
    He, Xinran
    Xiang, Xiaolin
    Pan, Piao
    Li, Peidong
    Cui, Yuehua
    NANOTECHNOLOGY, 2024, 35 (35)
  • [46] Silicon doped graphene as high cycle performance anode for lithium-ion batteries
    Liu, Hanlin
    Yang, Wang
    Che, Sai
    Li, Yun
    Xu, Cong
    Wang, Xin
    Ma, Guang
    Huang, Guoyong
    Li, Yongfeng
    CARBON, 2022, 196 : 633 - 638
  • [47] Silicon-carbon composite dispersed in a carbon paper substrate for solid polymer lithium-ion batteries
    Si, Q.
    Kawakubo, M.
    Matsui, M.
    Horiba, T.
    Yamamoto, O.
    Takeda, Y.
    Seki, N.
    Imanishi, N.
    JOURNAL OF POWER SOURCES, 2014, 248 : 1275 - 1280
  • [48] Purity of silicon: with great effect on its performance in graphite–silicon anode materials for lithium-ion batteries
    Chenxin Jin
    Guojun Xu
    Liekai Liu
    Zhihao Yue
    Xiaomin Li
    Fugen Sun
    Hao Tang
    Haibin Huang
    Lang Zhou
    Applied Physics A, 2017, 123
  • [49] Insight into silicon-carbon multilayer films as anode materials for lithium-ion batteries: A combined experimental and first principles study
    Zhang, Zhen
    Liao, Ningbo
    Zhou, Hongming
    Xue, Wei
    ACTA MATERIALIA, 2019, 178 : 173 - 178
  • [50] Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries
    Lai, Jun
    Guo, Huajun
    Wang, Zhixing
    Li, Xinhai
    Zhang, Xiaoping
    Wu, Feixiang
    Yue, Peng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 530 : 30 - 35