The nonlinear evolution of whistler-mode chorus: modulation instability as the source of tones

被引:0
|
作者
Ratliff, Daniel J. [1 ]
Allanson, Oliver [2 ,3 ,4 ]
机构
[1] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, England
[2] Univ Birmingham, Sch Engn, Space Environm & Radio Engn, Birmingham B15 2TT, England
[3] Univ Exeter, Dept Earth & Environm Sci, Penryn TR10 9FE, England
[4] Univ Exeter, Dept Math & Stat, Exeter EX4 4QF, England
基金
英国工程与自然科学研究理事会; 英国自然环境研究理事会;
关键词
plasma nonlinear phenomena; plasma waves; space plasma physics; WAVE-PARTICLE INTERACTIONS; SOLITARY WAVES; ELECTRON ACCELERATION; GENERATION; DISPERSION; DISCRETE; MAGNETOSPHERE; SIMULATION; TURBULENCE; DIFFUSION;
D O I
10.1017/S0022377823001265
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We review the modulation stability of parallel-propagating/field-aligned whistler-mode chorus (WMC) waves propagating in a warm plasma from a formal perspective with a focus on wave-particle interactions via ponderomotive forces. The modulation instability criteria are characterised by the group velocity dispersion, $d c_g/dk$, for whistler-mode waves and a condition on the ratio between the group velocity $c_g$ and the electron sound speed $c_{s,e}$. We also demonstrate that in order to investigate the spatiotemporal evolution of the envelope and the formation of packets (according to this mechanism), one necessarily needs to account for the motion of ions within the system, leading to an ionic influence on the modulation instability threshold determined by the ion fraction of the plasma. Finally, we demonstrate that chirping may be captured when higher-order effects are included within the spatiotemporal evolution of the amplitude. This yields not only an explicit expression for the sweep rate but also identifies a possible origin for the power band gap that occurs at half the electron gyrofrequency. Numerical validation demonstrates that the interaction between wave packets is a source for the emergence of tones observed within mission data, and such interactions may be a major source of the electron energisation which WMC are responsible for.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Nonlinear triggering process of whistler-mode emissions in a homogeneous magnetic field
    Fujiwara, Yuya
    Nogi, Takeshi
    Omura, Yoshiharu
    EARTH PLANETS AND SPACE, 2022, 74 (01):
  • [22] A simulation study of the propagation of whistler-mode chorus in the Earth's inner magnetosphere
    Katoh, Yuto
    EARTH PLANETS AND SPACE, 2014, 66
  • [23] Electron Diffusion and Advection During Nonlinear Interactions With Whistler-Mode Waves
    Allanson, O.
    Watt, C. E. J.
    Allison, H. J.
    Ratcliffe, H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (05)
  • [24] Simultaneous Influence of Whistler-Mode Chorus and EMIC Waves on Electron Loss in the Earth's Radiation Belt
    Lee, Dae-Young
    Kim, Joonsung
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (08) : 707 - 713
  • [25] Ray tracing of whistler-mode chorus elements: implications for generation mechanisms of rising and falling tone emissions
    Yamaguchi, K.
    Matsumuro, T.
    Omura, Y.
    Nunn, D.
    ANNALES GEOPHYSICAE, 2013, 31 (04) : 665 - 673
  • [26] Electron beams as the source of whistler-mode auroral hiss at Saturn
    Kopf, A. J.
    Gurnett, D. A.
    Menietti, J. D.
    Schippers, P.
    Arridge, C. S.
    Hospodarsky, G. B.
    Kurth, W. S.
    Grimald, S.
    Andre, N.
    Coates, A. J.
    Dougherty, M. K.
    GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [27] Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating whistler-Mode Chorus Emissions
    Omura, Yoshiharu
    Hsieh, Yi-Kai
    Foster, John C.
    Erickson, Philip J.
    Kletzing, Craig A.
    Baker, Daniel N.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (04) : 2795 - 2810
  • [28] Nonlinear Resonant Interactions of Radiation Belt Electrons with Intense Whistler-Mode Waves
    Artemyev, A. V.
    Mourenas, D.
    Zhang, X. -j.
    Agapitov, O.
    Neishtadt, A. I.
    Vainchtein, D. L.
    Vasiliev, A. A.
    Zhang, X.
    Ma, Q.
    Bortnik, J.
    Krasnoselskikh, V. V.
    SPACE SCIENCE REVIEWS, 2025, 221 (01)
  • [29] Nonlinear Wave Growth of Whistler-Mode Hiss Emissions in a Uniform Magnetic Field
    Liu, Yin
    Omura, Yoshiharu
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (05)
  • [30] Location and size of the global source region of whistler mode chorus
    Hayosh, M.
    Santolik, O.
    Parrot, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115