Computational Optimal Transport and Filtering on Riemannian Manifolds

被引:1
|
作者
Grange, Daniel [1 ]
Al-Jarrah, Mohammad [2 ]
Baptista, Ricardo [3 ]
Taghvaei, Amirhossein [2 ]
Georgiou, Tryphon T. [4 ]
Phillips, Sean [5 ]
Tannenbaum, Allen [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Bellmore, NY 11794 USA
[2] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[3] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[5] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM 87116 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
Optimal transportation; optimal control; nonlinear filtering; Riemannian manifolds; OPTIMAL MASS-TRANSPORT; POLAR FACTORIZATION; ATTITUDE;
D O I
10.1109/LCSYS.2023.3331834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we extend recent developments in computational optimal transport to the setting of Riemannian manifolds. In particular, we show how to learn optimal transport maps from samples that relate probability distributions defined on manifolds. Specializing these maps for sampling conditional probability distributions provides an ensemble approach for solving nonlinear filtering problems defined on such geometries. The proposed computational methodology is illustrated with examples of transport and nonlinear filtering on Lie groups, including the circle S1, the special Euclidean group SE(2), and the special orthogonal group SO(3).
引用
收藏
页码:3495 / 3500
页数:6
相关论文
共 50 条
  • [41] Random Cech complexes on Riemannian manifolds
    Bobrowski, Omer
    Oliveira, Goncalo
    RANDOM STRUCTURES & ALGORITHMS, 2019, 54 (03) : 373 - 412
  • [42] Minimum L∞ accelerations in Riemannian manifolds
    Noakes, Lyle
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (04) : 839 - 863
  • [43] On the Calculus of Limiting Subjets on Riemannian Manifolds
    Hejazi, Mansoureh Alavi
    Hosseini, Seyedehsomayeh
    Pouryayevali, Mohamad R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2013, 10 (01) : 593 - 607
  • [44] On the radial limits of mappings on Riemannian manifolds
    Mihai Cristea
    Analysis and Mathematical Physics, 2023, 13
  • [45] Regularity of optimal transport on compact, locally nearly spherical, manifolds
    Delanoe, Philippe
    Ge, Yuxin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 646 : 65 - 115
  • [46] Generalized Geodesic Convexity on Riemannian Manifolds
    Ahmad, Izhar
    Khan, Meraj Ali
    Ishan, Amira A.
    MATHEMATICS, 2019, 7 (06)
  • [47] Kinetic Brownian motion on Riemannian manifolds
    Angst, Juergen
    Bailleul, Ismael
    Tardif, Camille
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
  • [48] Kernel density estimation on Riemannian manifolds
    Pelletier, B
    STATISTICS & PROBABILITY LETTERS, 2005, 73 (03) : 297 - 304
  • [49] Counting nodal domains in Riemannian manifolds
    Donnelly, Harold
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2014, 46 (01) : 57 - 61
  • [50] Stability of Neural Networks on Riemannian Manifolds
    Wang, Zhiyang
    Ruiz, Luana
    Ribeiro, Alejandro
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1845 - 1849