Computational Optimal Transport and Filtering on Riemannian Manifolds

被引:1
|
作者
Grange, Daniel [1 ]
Al-Jarrah, Mohammad [2 ]
Baptista, Ricardo [3 ]
Taghvaei, Amirhossein [2 ]
Georgiou, Tryphon T. [4 ]
Phillips, Sean [5 ]
Tannenbaum, Allen [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Bellmore, NY 11794 USA
[2] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[3] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[5] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM 87116 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
Optimal transportation; optimal control; nonlinear filtering; Riemannian manifolds; OPTIMAL MASS-TRANSPORT; POLAR FACTORIZATION; ATTITUDE;
D O I
10.1109/LCSYS.2023.3331834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we extend recent developments in computational optimal transport to the setting of Riemannian manifolds. In particular, we show how to learn optimal transport maps from samples that relate probability distributions defined on manifolds. Specializing these maps for sampling conditional probability distributions provides an ensemble approach for solving nonlinear filtering problems defined on such geometries. The proposed computational methodology is illustrated with examples of transport and nonlinear filtering on Lie groups, including the circle S1, the special Euclidean group SE(2), and the special orthogonal group SO(3).
引用
收藏
页码:3495 / 3500
页数:6
相关论文
共 50 条
  • [21] Algebraic properties of Riemannian manifolds
    Chung, Youngjoo
    Hwang, Chi-Ok
    Yang, Hyun Seok
    GENERAL RELATIVITY AND GRAVITATION, 2023, 55 (08)
  • [22] Semismooth Function on Riemannian Manifolds
    Ghahraei, E.
    JOURNAL OF MATHEMATICAL EXTENSION, 2011, 5 (02) : 23 - 29
  • [23] Algebraic properties of Riemannian manifolds
    Youngjoo Chung
    Chi-Ok Hwang
    Hyun Seok Yang
    General Relativity and Gravitation, 2023, 55
  • [24] ON THE KOBAYASHI METRICS IN RIEMANNIAN MANIFOLDS
    Gaussier, Herve
    Sukhov, Alexandre
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (05) : 1993 - 2006
  • [25] Principal Curves on Riemannian Manifolds
    Hauberg, Soren
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (09) : 1915 - 1921
  • [26] On generalized recurrent Riemannian manifolds
    Singh, H
    Khan, Q
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 56 (1-2): : 87 - 95
  • [27] FEDERATED LEARNING on RIEMANNIAN MANIFOLDS
    Li J.
    Ma S.
    Applied Set-Valued Analysis and Optimization, 2023, 5 (02): : 213 - 232
  • [28] Learning to Optimize on Riemannian Manifolds
    Gao, Zhi
    Wu, Yuwei
    Fan, Xiaomeng
    Harandi, Mehrtash
    Jia, Yunde
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 5935 - 5952
  • [29] Subgradient Algorithm on Riemannian Manifolds
    O. P. Ferreira
    P. R. Oliveira
    Journal of Optimization Theory and Applications, 1998, 97 : 93 - 104
  • [30] Optimality and Duality on Riemannian Manifolds
    Ruiz-Garzon, Gabriel
    Osuna-Gomez, Rafaela
    Rufian-Lizana, Antonio
    Hernandez-Jimenez, Beatriz
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (05): : 1245 - 1259