Computational Optimal Transport and Filtering on Riemannian Manifolds

被引:1
|
作者
Grange, Daniel [1 ]
Al-Jarrah, Mohammad [2 ]
Baptista, Ricardo [3 ]
Taghvaei, Amirhossein [2 ]
Georgiou, Tryphon T. [4 ]
Phillips, Sean [5 ]
Tannenbaum, Allen [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Bellmore, NY 11794 USA
[2] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[3] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[5] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM 87116 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
Optimal transportation; optimal control; nonlinear filtering; Riemannian manifolds; OPTIMAL MASS-TRANSPORT; POLAR FACTORIZATION; ATTITUDE;
D O I
10.1109/LCSYS.2023.3331834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we extend recent developments in computational optimal transport to the setting of Riemannian manifolds. In particular, we show how to learn optimal transport maps from samples that relate probability distributions defined on manifolds. Specializing these maps for sampling conditional probability distributions provides an ensemble approach for solving nonlinear filtering problems defined on such geometries. The proposed computational methodology is illustrated with examples of transport and nonlinear filtering on Lie groups, including the circle S1, the special Euclidean group SE(2), and the special orthogonal group SO(3).
引用
收藏
页码:3495 / 3500
页数:6
相关论文
共 50 条
  • [1] Particle filtering on Riemannian manifolds
    Snoussi, Hichem
    Mohammad-Djafari, Ali
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 219 - +
  • [2] Unscented Kalman Filtering on Riemannian Manifolds
    Søren Hauberg
    François Lauze
    Kim Steenstrup Pedersen
    Journal of Mathematical Imaging and Vision, 2013, 46 : 103 - 120
  • [3] Unscented Kalman Filtering on Riemannian Manifolds
    Hauberg, Soren
    Lauze, Francois
    Pedersen, Kim Steenstrup
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2013, 46 (01) : 103 - 120
  • [4] NEIGHBORING EXTREMAL OPTIMAL CONTROL FOR MECHANICAL SYSTEMS ON RIEMANNIAN MANIFOLDS
    Bloch, Anthony M.
    Gupta, Rohit
    Kolmanovsky, Ilya V.
    JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (03) : 257 - 272
  • [5] Sharp Sobolev inequalities on noncompact Riemannian manifolds with Ric ≥ 0 via optimal transport theory
    Kristaly, Alexandru
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (08)
  • [6] A Survey of Optimal Control Problems Evolved on Riemannian Manifolds
    Deng, Li
    Zhang, Xu
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2022, 3 (03): : 351 - 382
  • [7] ON THE OPTIMAL CONTROL OF IMPULSIVE HYBRID SYSTEMS ON RIEMANNIAN MANIFOLDS
    Taringoo, Farzin
    Caines, Peter E.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (04) : 3127 - 3153
  • [8] LINEARIZED OPTIMAL TRANSPORT ON MANIFOLDS*
    Sarrazin, Clement
    Schmitzer, Bernhard
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (04) : 4970 - 5016
  • [9] EXISTENCE OF OPTIMAL PAIRS FOR OPTIMAL CONTROL PROBLEMS WITH STATES CONSTRAINED TO RIEMANNIAN MANIFOLDS
    Deng, Li
    Zhang, Xu
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2024, 62 (04) : 2098 - 2114
  • [10] Computational Optimal Transport
    Peyre, Gabriel
    Cuturi, Marco
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 11 (5-6): : 355 - 607