Highly stretchable PTFE particle enhanced triboelectric nanogenerator for droplet energy harvestings

被引:14
|
作者
Yang, Changjun [1 ]
Wang, Yamei [1 ]
Wang, Yan [1 ]
Zhao, Zehui [1 ]
Zhang, Liwen [1 ]
Chen, Huawei [1 ,2 ]
机构
[1] Beihang Univ, Beijing 100191, Peoples R China
[2] Beihang Univ, Adv Innovat Ctr Biomed Engn, Beijing 100191, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Hydrophobicity; Stretchability; High transfer charge density; Droplet energy harvesting; RENEWABLE ENERGY;
D O I
10.1016/j.nanoen.2023.109000
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Liquid-solid based triboelectric nanogenerator (TENG) can be widely utilized for droplet energy harvesting, in which the hydrophobicity of triboelectric layer is crucial for output enhancement. However, poor mechanical properties of hydrophobic triboelectric layers prepared in classic methods greatly limit the TENG's application. Here, a stretchable hydrophobic triboelectric nanogenerator (SH-TENG) with excellent output, and durability is devised by strongly bonding PTFE micro particles on a flexible substrate even under extreme stretching or abrasion. By synergistic enhancement of the PTFE particles on both contact-separation and charge-transfer between droplet and triboelectric layer, the transfer charge density of SH-TENG is increased to similar to 4.74 x 10(-3) C/ m(2)center dot L, along with the open circuit voltage (V-OC) and short circuit current (I-SC) over 7 times and 6 times higher than TENG without PTFE modified, respectively. Moreover, under a stretching rate of 500%, the SH-TENG shows less 20% decline of its output performance to guarantee applications in flexible electronics. A miniature watch can be sufficiently powered by the SH-TENGs with total area of 0.016 m(2) under the simulated raindrop flow rate of 50 mL/min. With such outstanding performance and environmental adaptability, the SH-TENG can be integrated with various objects to collect droplet energy and supply electronic devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A High-Performance Stretchable Triboelectric Nanogenerator Based on Polytetrafluoroethylene (PTFE) Particles
    Liu, Jiawei
    Wang, Jinhui
    Wang, Yawen
    Wu, Zhilin
    Sun, Hongbiao
    Yang, Yan
    Zhang, Lisheng
    Kou, Xu
    Li, Pengyuan
    Kang, Wenbin
    Wang, Jiangxin
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (01)
  • [2] A High-Performance Stretchable Triboelectric Nanogenerator Based on Polytetrafluoroethylene(PTFE) Particles
    Jiawei Liu
    Jinhui Wang
    Yawen Wang
    Zhilin Wu
    Hongbiao Sun
    Yan Yang
    Lisheng Zhang
    Xu Kou
    Pengyuan Li
    Wenbin Kang
    Jiangxin Wang
    Energy & Environmental Materials, 2025, 8 (01) : 250 - 258
  • [3] Highly conductive liquid metal electrode based stretchable piezoelectric-enhanced triboelectric nanogenerator for harvesting irregular mechanical energy
    Yang, Changjun
    He, Jian
    Guo, Yonghong
    Zhao, Dongyang
    Hou, Xiaojuan
    Zhong, Jixin
    Zhang, Shengnan
    Cui, Min
    Chou, Xiujian
    MATERIALS & DESIGN, 2021, 201
  • [4] Enhanced of ZIF-8 and MXene decorated triboelectric nanogenerator for droplet energy harvesting
    Wang, Mingxing
    Wang, Xiutong
    Nan, Youbo
    Zhou, Hui
    Xu, Hui
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [5] Triboelectric Nanogenerator for Droplet Energy Harvesting Based on Hydrophobic Composites
    Zheng, Yang
    Li, Jingjing
    Xu, Tiantian
    Cui, Hongzhi
    Li, Xiaoyi
    MATERIALS, 2023, 16 (15)
  • [6] A Dual-Mode Triboelectric Nanogenerator for Efficiently Harvesting Droplet Energy
    Liu, Di
    Yang, Peiyuan
    Gao, Yikui
    Liu, Nian
    Ye, Cuiying
    Zhou, Linglin
    Zhang, Jiayue
    Guo, Ziting
    Wang, Jie
    Wang, Zhong Lin
    SMALL, 2024, 20 (31)
  • [7] A Stretchable Multimode Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Hu, Shiyu
    Chang, Shoude
    Xiao, Gaozhi
    Lu, Jianping
    Gao, Jun
    Zhang, Yanguang
    Tao, Ye
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (03)
  • [8] Skin-integrated, stretchable triboelectric nanogenerator for energy harvesting and mechanical sensing
    Zhao, Ling
    Lin, Zihong
    Lai, King Wai Chiu
    MATERIALS TODAY ELECTRONICS, 2022, 2
  • [9] Highly stretchable conductors reveal the effect of dielectric layer thickness on triboelectric nanogenerator output
    Song, Wei-Zhi
    Zhang, Ting-Ting
    Zhang, Duo-Shi
    Li, Chang-Long
    Sun, De-Jun
    Zhang, Jun
    Ramakrishna, Seeram
    Long, Yun-Ze
    NANO ENERGY, 2023, 114
  • [10] An ultrathin stretchable triboelectric nanogenerator with coplanar electrode for energy harvesting and gesture sensing
    Chen, Xuexian
    Song, Yu
    Chen, Haotian
    Zhang, Jinxin
    Zhang, Haixia
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (24) : 12361 - 12368