Interference recommendation for the pump sizing process in progressive cavity pumps using graph neural networks

被引:10
作者
Starke, Leandro [1 ]
Hoppe, Aurelio Faustino [1 ]
Sartori, Andreza [1 ,2 ]
Stefenon, Stefano Frizzo [3 ,4 ]
De Paz Santana, Juan Francisco [5 ]
Leithardt, Valderi Reis Quietinho [6 ]
机构
[1] Univ Reg Blumenau, Dept Informat Syst & Comp, Rua Antonio Veiga 140, BR-89030903 Blumenau, SC, Brazil
[2] Univ Reg Blumenau, Elect Engn Grad Program, Rua Sao Paulo 3250, BR-89030000 Blumenau, SC, Brazil
[3] Fdn Bruno Kessler, Via Sommar 18, I-38123 Trento, TN, Italy
[4] Univ Udine, Via Sci 206, I-33100 Udine, UD, Italy
[5] Univ Salamanca, Fac Sci, Expert Syst & Applicat Lab, Salamanca 37008, Spain
[6] Inst Politecn Lisboa, Inst Super Engn Lisboa ISEL, Rua Conselheiro Emidio Navarro 1, P-1959007 Lisbon, Portugal
关键词
PREDICTION; GCN;
D O I
10.1038/s41598-023-43972-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pump sizing is the process of dimensional matching of an impeller and stator to provide a satisfactory performance test result and good service life during the operation of progressive cavity pumps. In this process, historical data analysis and dimensional monitoring are done manually, consuming a large number of man-hours and requiring a deep knowledge of progressive cavity pump behavior. This paper proposes the use of graph neural networks in the construction of a prototype to recommend interference during the pump sizing process in a progressive cavity pump. For this, data from different applications is used in addition to individual control spreadsheets to build the database used in the prototype. From the pre-processed data, complex network techniques and the betweenness centrality metric are used to calculate the degree of importance of each order confirmation, as well as to calculate the dimensionality of the rotors. Using the proposed method a mean squared error of 0.28 is obtained for the cases where there are recommendations for order confirmations. Based on the results achieved, it is noticeable that there is a similarity of the dimensions defined by the project engineers during the pump sizing process, and this outcome can be used to validate the new design definitions.
引用
收藏
页数:12
相关论文
共 92 条
[1]  
AbouRida A., Complex Networks & Their Applications X, P563, DOI 10
[2]   Graph Neural Network: A Comprehensive Review on Non-Euclidean Space [J].
Asif, Nurul A. ;
Sarker, Yeahia ;
Chakrabortty, Ripon K. ;
Ryan, Michael J. ;
Ahamed, Md. Hafiz ;
Saha, Dip K. ;
Badal, Faisal R. ;
Das, Sajal K. ;
Ali, Md. Firoz ;
Moyeen, Sumaya I. ;
Islam, Md. Robiul ;
Tasneem, Zinat .
IEEE ACCESS, 2021, 9 :60588-60606
[3]  
Assmann B.W., 2008, Estudo de estrategias de otimizacao para pocos de petroleo com elevacao por bombeio de cavidades progressivas
[4]   Quantum and non-signalling graph isomorphisms [J].
Atserias, Albert ;
Mancinska, Laura ;
Roberson, David E. ;
Samal, Robert ;
Severini, Simone ;
Varvitsiotis, Antonios .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 136 :289-328
[5]   Multistream Graph Attention Networks for Wind Speed Forecasting [J].
Aykas, Dogan ;
Mehrkanoon, Siamak .
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
[6]   A3T-GCN: Attention Temporal Graph Convolutional Network for Traffic Forecasting [J].
Bai, Jiandong ;
Zhu, Jiawei ;
Song, Yujiao ;
Zhao, Ling ;
Hou, Zhixiang ;
Du, Ronghua ;
Li, Haifeng .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (07)
[7]   A new energy consumption prediction method for chillers based on GraphSAGE by combining empirical knowledge and operating data [J].
Chen, Zhiwen ;
Deng, Qiao ;
Ren, Hao ;
Zhao, Zhengrun ;
Peng, Tao ;
Yang, Chunhua ;
Gui, Weihua .
APPLIED ENERGY, 2022, 310
[8]   Energy consumption prediction of cold source system based on GraphSAGE [J].
Chen, Zhiwen ;
Deng, Qiao ;
Zhao, Zhengrun ;
Sun, Bei ;
Peng, Tao ;
Yang, Chunhua .
IFAC PAPERSONLINE, 2021, 54 (11) :37-42
[9]   Classification of Contaminated Insulators Using k-Nearest Neighbors Based on Computer Vision [J].
Corso, Marcelo Picolotto ;
Perez, Fabio Luis ;
Stefenon, Stefano Frizzo ;
Yow, Kin-Choong ;
Garcia Ovejero, Raul ;
Quietinho Leithardt, Valderi Reis .
COMPUTERS, 2021, 10 (09)
[10]  
de Oliveira JR, 2018, INTERCIENCIA, V43, P784