Synthesis, Biological Evaluation, and Molecular Docking Investigation of New Series of Azoimino-Sulfathiazole (AIST) Derivatives

被引:4
|
作者
Mahmoodi, Nosrat O. [1 ]
Amouee, Fatemeh [1 ]
Yazdani Nyaki, Hadiseh [1 ]
Taherpour Nahzomi, Hossein [2 ]
Ahmadi, Ali [1 ]
机构
[1] Univ Guilan, Fac Sci, Dept Organ Chem & Pharmaceut Chem, Rasht, Iran
[2] Payame Noor Univ, Dept Chem, Tehran, Iran
关键词
Azoimino-sulfathiazoles (AIST); sulfathiazole (ST); MTT assay; antibacterial activity; molecular docking; ORBITAL METHODS; BASIS-SETS; 3RD-ROW ATOMS; SULFA DRUGS; SULFONAMIDE; ANTIBACTERIAL; MECHANISM; THIAZOLE; ANTICANCER; DICHROISM;
D O I
10.1080/10406638.2023.2257840
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Sulfonamides are important compounds with special applications in pharmaceuticals due to their antibacterial and antiparasitic properties, and they are known as sulfa drugs (SDs). In this study, we focused on the multifunctional therapeutic compound sulfathiazole (ST) and investigated its hybridization of imine bonds with various azo compounds. A series of novel azoimino-sulfathiazoles (AIST) was successfully synthesized using a one-pot three-component reaction (3MCR) methodology. Additionally, we reported the design and synthesis of two ST derivatives bound to an azo group in a 3MCR dish. The structure of the newly synthesized AISD after separation and purification was examined and confirmed by TLC, M.P., FT-IR, 1H NMR, and 13C NMR. Furthermore, their cytotoxicity was evaluated via MTT assay. The antibacterial, antioxidant, and anticancer activities of the AISD compounds were assessed using the MTT assay, focusing on the PC-3 human prostate cancer cell line. The results showed good resistance to E. coli and S. aureus, with inhibition zones of 27 and 31 mm, respectively, compared to standard penicillin G. More importantly, certain AIST compounds exhibited superior antibacterial activity compared to penicillin G. To understand the mode of action of the proteins and potential interactions, docking calculations were performed using the target proteins 1FDW, 3FC2, and 5GWK. 5GWK achieved the highest placement score, followed by 1FDW and 3FC2, which showed strong closeness. A detailed analysis of the ligand-protein interactions revealed the strongest interaction with human topoisomerase II alpha (5GWK) as the target protein.
引用
收藏
页码:4724 / 4745
页数:22
相关论文
共 50 条
  • [1] Efficient synthesis of new azo-sulfonamide derivatives and investigation of their molecular docking and cytotoxicity results
    Mahmoodi, Nosrat O.
    Ahmadi, Ali
    Nyaki, Hadiseh Yazdani
    Nahzomi, Hossein Taherpour
    Kokhdan, Esmaeel Panahi
    ARABIAN JOURNAL OF CHEMISTRY, 2022, 15 (12)
  • [2] Synthesis, biological evaluation, and molecular docking studies of pyrazolyl-acylhydrazone derivatives as novel anticancer agents
    Xing, Man
    Zhao, Ting-Ting
    Ren, Yu-Jia
    Peng, Na-Na
    Yang, Xian-Hui
    Li, Xi
    Zhang, Hui
    Liu, Gao-Qi
    Zhang, Li-Rong
    Zhu, Hai-Liang
    MEDICINAL CHEMISTRY RESEARCH, 2014, 23 (07) : 3274 - 3286
  • [3] Biological evaluation and molecular docking studies of new curcuminoid derivatives: Synthesis and characterization
    Banuppriya, Govindharasu
    Sribalan, Rajendran
    Padmini, Vediappen
    Shanmugaiah, Vellasamy
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2016, 26 (07) : 1655 - 1659
  • [4] Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents
    İrfan Çapan
    Mohammed Hawash
    Nidal Jaradat
    Yusuf Sert
    Refik Servi
    İrfan Koca
    BMC Chemistry, 17
  • [5] New Urea Derivatives as Potential Antimicrobial Agents: Synthesis, Biological Evaluation, and Molecular Docking Studies
    Patil, Mahadev
    Noonikara-Poyil, Anurag
    Joshi, Shrinivas D.
    Patil, Shivaputra A.
    Patil, Siddappa A.
    Bugarin, Alejandro
    ANTIBIOTICS-BASEL, 2019, 8 (04):
  • [6] Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents
    Capan, Irfan
    Hawash, Mohammed
    Jaradat, Nidal
    Sert, Yusuf
    Servi, Refik
    Koca, Irfan
    BMC CHEMISTRY, 2023, 17 (01)
  • [7] Novel quinazolin-sulfonamid derivatives: synthesis, characterization, biological evaluation, and molecular docking studies
    Sepehri, Nima
    Mohammadi-Khanaposhtani, Maryam
    Asemanipoor, Nafise
    Hosseini, Samanesadat
    Biglar, Mahmood
    Larijani, Bagher
    Mahdavi, Mohammad
    Hamedifar, Haleh
    Taslimi, Parham
    Sadeghian, Nastaran
    Norizadehtazehkand, Mostafa
    Gulcin, Ilhami
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (08) : 3359 - 3370
  • [8] Design, synthesis, molecular docking studies and biological evaluation of thiazole carboxamide derivatives as COX inhibitors
    Hawash, Mohammed
    Jaradat, Nidal
    Abualhasan, Murad
    Sukuroglu, Murat Kadir
    Qaoud, Mohammed T. T.
    Kahraman, Deniz Cansen
    Daraghmeh, Heba
    Maslamani, Leen
    Sawafta, Mais
    Ratrout, Ala
    Issa, Linda
    BMC CHEMISTRY, 2023, 17 (01)
  • [9] Design, synthesis, biological evaluation, and molecular docking of new benzofuran and indole derivatives as tubulin polymerization inhibitors
    El-Sayed, Naglaa F.
    El-Hussieny, Marwa
    Ewies, Ewies F.
    El Shehry, Mohamed F.
    Awad, Hanem M.
    Fouad, Marwa A.
    DRUG DEVELOPMENT RESEARCH, 2022, 83 (02) : 485 - 500
  • [10] Design, Synthesis, Molecular Docking, and Biological Evaluation of New Emodin Anthraquinone Derivatives as Potential Antitumor Substances
    Li, Yuying
    Guo, Fang
    Chen, Tinggui
    Zhang, Liwei
    Wang, Zhuanhua
    Su, Qiang
    Feng, Liheng
    CHEMISTRY & BIODIVERSITY, 2020, 17 (09)