Deep learning-based intrusion detection approach for securing industrial Internet of Things

被引:34
|
作者
Soliman, Sahar [1 ]
Oudah, Wed [1 ]
Aljuhani, Ahamed [1 ]
机构
[1] Univ Tabuk, Dept Informat Technol, Tabuk 47512, Saudi Arabia
关键词
Internet of Things; Industrial Internet of Things; Intrusion detection; Cyberattack; Cybersecurity; NETWORKS; ENSEMBLE; IOT;
D O I
10.1016/j.aej.2023.09.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The widespread deployment of the Internet of Things (IoT) into critical sectors such as industrial and manufacturing has resulted in the Industrial Internet of Things (IIoT). The IIoT consists of sensors, actuators, and smart devices that communicate with one another to optimize manufacturing and industrial processes. Although IIoT provides various benefits to both service providers and consumers, security and privacy remain a big challenge. An intrusion detection system (IDS) has been utilized to mitigate cyberattacks in such a connected network. However, many existing solutions for IDS in IIoT suffer from the lack of comprehensiveness of the types of attack the network is exposed to, high feature dimension, models built on out-of-date datasets, and a lack of focus on the problem of imbalanced datasets. To address the aforementioned issues, we propose an intelligent detection system for identifying cyberattacks in Industrial IoT networks. The proposed model uses the singular value decomposition (SVD) technique to reduce data features and improve detection results. We use the synthetic minority over-sampling (SMOTE) technique to avoid over-fitting and under-fitting issues that result in biased classification. Several machine learning and deep learning algorithms have been implemented to classify data for binary and multi-class classification. We evaluate the efficacy of the proposed intelligent model on TON_IOT dataset. The proposed approach achieved an accuracy rate of 99.99% and a reduced error rate of 0.001% for binary classification, and an accuracy rate of 99.98% and a reduced error rate of 0.016% for multi-class classification.
引用
收藏
页码:371 / 383
页数:13
相关论文
共 50 条
  • [1] A Federated Learning-Based Approach for Improving Intrusion Detection in Industrial Internet of Things Networks
    Rashid, Md Mamunur
    Khan, Shahriar Usman
    Eusufzai, Fariha
    Redwan, Md. Azharuddin
    Sabuj, Saifur Rahman
    Elsharief, Mahmoud
    NETWORK, 2023, 3 (01): : 158 - 179
  • [2] Intrusion detection for Industrial Internet of Things based on deep learning
    Lu, Yaoyao
    Chai, Senchun
    Suo, Yuhan
    Yao, Fenxi
    Zhang, Chen
    NEUROCOMPUTING, 2024, 564
  • [3] An Explainable Ensemble Deep Learning Approach for Intrusion Detection in Industrial Internet of Things
    Shtayat, Mousa'B Mohammad
    Hasan, Mohammad Kamrul
    Sulaiman, Rossilawati
    Islam, Shayla
    Khan, Atta Ur Rehman
    IEEE ACCESS, 2023, 11 : 115047 - 115061
  • [4] Towards a deep learning-driven intrusion detection approach for Internet of Things
    Ge, Mengmeng
    Syed, Naeem Firdous
    Fu, Xiping
    Baig, Zubair
    Robles-Kelly, Antonio
    COMPUTER NETWORKS, 2021, 186
  • [5] A deep learning approach for intrusion detection in Internet of Things using focal loss function
    Dina, Ayesha S.
    Siddique, A. B.
    Manivannan, D.
    INTERNET OF THINGS, 2023, 22
  • [6] Toward Improved Machine Learning-Based Intrusion Detection for Internet of Things Traffic
    Alkadi, Sarah
    Al-Ahmadi, Saad
    Ben Ismail, Mohamed Maher
    COMPUTERS, 2023, 12 (08)
  • [7] A Deep Learning-Based Approach for the Detection of Various Internet of Things Intrusion Attacks Through Optical Networks
    Imtiaz, Nouman
    Wahid, Abdul
    Ul Abideen, Syed Zain
    Kamal, Mian Muhammad
    Sehito, Nabila
    Khan, Salahuddin
    Virdee, Bal S.
    Kouhalvandi, Lida
    Alibakhshikenari, Mohammad
    PHOTONICS, 2025, 12 (01)
  • [8] A deep learning-based approach with two-step minority classes prediction for intrusion detection in Internet of Things networks
    Maoudj, Salah Eddine
    Belghiat, Aissam
    KNOWLEDGE-BASED SYSTEMS, 2025, 312
  • [9] Deep-IFS: Intrusion Detection Approach for Industrial Internet of Things Traffic in Fog Environment
    Abdel-Basset, Mohamed
    Chang, Victor
    Hawash, Hossam
    Chakrabortty, Ripon K.
    Ryan, Michael
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (11) : 7704 - 7715
  • [10] Deep Learning-Based Intrusion Detection System for Internet of Vehicles
    Ahmed, Imran
    Jeon, Gwanggil
    Ahmad, Awais
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (01) : 117 - 123